Université PSL

Les projets de recherche

L’IPGG offre des financements postdoctoraux pour des projets où la microfluidique joue un rôle central au sein des équipes de recherche membres de l'IPGG.

Nous mettons un accent particulier sur les projets "à haut risque scientifique", ceux qui sont difficiles à financer par les sources habituelles (ANR, etc.).

Nous donnons la possibilité de nous proposer plusieurs thèses pour un seul projet au sein de différents laboratoires de l’IPGG.

Nous souhaitons soutenir un ou deux projets de plus grande ampleur pour lequel, grâce à une synergie mise en œuvre au sein de l’IPGG, il sera possible de relever des défis d’envergure.



Une nouvelle voie pour la séparation eau-éthanol grâce aux membranes de graphène-oxide

Equipes :
MICROMEGAS
Porteurs du projet :
Alessandro Siria
Année d'obtention :
2017

The depletion of fossil fuel resources and its increase in global demand lead to the development of alternative sustainable energies replacing fossil fuel. The biofuels, such as the ethanol and butanol, have recently attracted great attention, both in fundamental researches and industrial applications. Biofuels are attractive due their diverse resources, such as sugarcane, wheat, corn, lignocellulosic biomass, and crop waste residues. Standard technologies to produce and purify biofuels (fermentation and pervaporation), however, are not very efficient energetically. While membrane reverse osmosis approaches would be much less costly, the attempts to fabricate membranes that are semi-permeable to ethanol but not to water were merely unsuccessful. In this project, we propose here to develop a new class of membranes made of a multistack of graphene and graphene-oxide layers for the separation of water-ethanol mixtures. Based on a theoretical and numerical prediction obtained in our team, showing that GO membrane are self-semi-permebale, we expect this graphitic membrane to allow for the separation of water from alcohol across this membrane. Preliminary experimental result confirm this unique property, which remain to be thoroughly investigated. This is the aiom of the present project. It will allow to develop a completely new and highly attractive method for water-ethanol separation.


Modèle biomimétique d'un "rein sur puce" pour la nanofiltration

Equipes :
MICROMEGAS
Porteurs du projet :
Lydéric Bocquet
Année d'obtention :
2016

The vivid need in fresh water is one of the main challenges now faced by humanity. Water desalination and water recycling involve costly separation processes in terms of energy. The domain has been boosted over the last two decades by the progresses made in membrane technologies for water purification, such as reverse osmosis or nano- and ultra- filtration [1], and more recently by the possibilities offered by nanoscale materials, such as graphene or advanced membranes [2, 3]. However, a necessary step for progress requires out-of-the-box ideas beyond sieving separation principles.
In this projet our aim is to fabricate a biomimetic device mimicking one of the most efficient filtration devices: the kidney [4]. We showed recently in a theoretical investigation, see Ref. [5], that the central piece of the kidney filtration, the U-shaped loop of Henle, is designed as an active osmotic exchanger: accordingly, the waste is separated from water and salt via a symbiotic reabsorbtion, with salt playing the role of an ”osmotic activator” [5]. Beyond, we showed that this design allows to operate at a remarkably small energy cost, typically one order of magnitude smaller than traditional sieving processes like nanofiltration, while working at much smaller pressures.
Taking a biomimetic perspective, we now want to take inspiration from this design and fabricate experimentally a microfluidic artificial counterpart of the kidney filtration process. The design will rely on existing microfabrication technologies and membranes, and use only electric fields as driving forces. This will allow to explore systematically the performance of such a osmotic exchanger in terms of separation of species. Various extensions will be considered. Such a ”kidney on a chip” could be used for compact and low-energy artificial dialytic systems. It also points to new avenues for efficient separation processes and advanced water recycling.


2 projets.