Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :

A L'ATTENTION DES EQUIPES IPGG :

- Pour toute publication de résultats ayant reçu l’aide de l’IPGG (présence dans les locaux de l’IPGG, passage sur la plateforme technologique de l’IPGG, collaboration inter équipes IPGG, lié à une bourse doctorale ou postdoctorale IPGG, ou encore utilisation des espaces communs), il vous faut indiquer  cette phrase « Ce travail a été réalisé avec le soutien du laboratoire d’excellence Institut Pierre-Gilles de Gennes (programme Investissements d’avenir ANR-10-IDEX-0001-02 PSL et ANR-10-LABX-31). » / « This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d’excellence, “Investissements d’avenir” program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.). ».

- Pour toute publication de résultats obtenu via l'utilisation d’un équipement acheté par l’Equipex IPGG, il vous faut ajouter  la codification suivante : « ANR-10-EQPX-34 ».

Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - D. Ferraro, M. Serra, D. Filippi, L. Zago,a E. Guglielmin,a M. Pierno, S. Descroix, J.-L. Viovy and G. Mistura
Hypertension - 74(1) 145-153 - DOI: 10.1161/HYPERTENSIONAHA.118.12380 - 2019
Droplet microfluidics is a powerful technology that finds many applications in chemistry and biomedicine. Among different configurations, droplets confined in a capillary (or plugs) present a number of advantages: they allow positional identification and simplify the integration of complex multi-steps protocols. However, these protocols rely on the control of droplet speed, which is affected by a complex and still debated interplay of various physico-chemical parameters like droplet length, viscosity ratio between droplets and carrier fluid, flow rate and interfacial tension. We present here a systematic investigation of the droplet speed as a function of their length and interfacial tension, and propose a novel, simple and robust methodology to control the relative distance between consecutive droplets flowing in microfluidic channels through the addition of surfactants either into the dispersed and/or into the continuous phases. As a proof of concept application, we present the possibility to accurately trigger in space and time the merging of two confined droplets flowing in a uniform cross-section circular capillary. This approach is further validated by monitoring a conventional enzymatic reaction used to quantify the concentration of H2O2 in a biological sample, showing its potentialities in both continuous and stopped assay methods.
Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - D. Ferraro, M. Serra, D. Filippi, L. Zago,a E. Guglielmin,a M. Pierno, S. Descroix, J.-L. Viovy and G. Mistura
Lab. Chip - 74(1) 145-153 - DOI: 10.1161/HYPERTENSIONAHA.118.12380 - 2019
Droplet microfluidics is a powerful technology that finds many applications in chemistry and biomedicine. Among different configurations, droplets confined in a capillary (or plugs) present a number of advantages: they allow positional identification and simplify the integration of complex multi-steps protocols. However, these protocols rely on the control of droplet speed, which is affected by a complex and still debated interplay of various physico-chemical parameters like droplet length, viscosity ratio between droplets and carrier fluid, flow rate and interfacial tension. We present here a systematic investigation of the droplet speed as a function of their length and interfacial tension, and propose a novel, simple and robust methodology to control the relative distance between consecutive droplets flowing in microfluidic channels through the addition of surfactants either into the dispersed and/or into the continuous phases. As a proof of concept application, we present the possibility to accurately trigger in space and time the merging of two confined droplets flowing in a uniform cross-section circular capillary. This approach is further validated by monitoring a conventional enzymatic reaction used to quantify the concentration of H2O2 in a biological sample, showing its potentialities in both continuous and stopped assay methods.
Magnetic fluidized bed for solid phase extraction in microfluidic systems†
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Iago Pereiro, ORCID logo ‡abc Sanae Tabnaoui,‡ab Marc Fermigier,d Olivia du Roure,d Stéphanie Descroix,abc Jean-Louis Viovy*abc and Laurent Malaquin
Lab. Chip - 17 1603-1615 - https://doi.org/10.1039/C7LC00063D - 2019
Fluidization, a process in which a granular solid phase behaves like a fluid under the influence of an imposed upward fluid flow, is routinely used in many chemical and biological engineering applications. It brings, to applications involving fluid–solid exchanges, advantages such as high surface to volume ratio, constant mixing, low flow resistance, continuous operation and high heat transfer. We present here the physics of a new miniaturized, microfluidic fluidized bed, in which gravity is replaced by a magnetic field created by an external permanent magnet, and the solid phase is composed of magnetic microbeads with diameters ranging from 1 to 5 μm. These beads can be functionalized with different ligands, catalysts or enzymes, in order to use the fluidized bed as a continuous purification column or bioreactor. It allows flow-through operations at flow rates ranging from 100 nL min−1 up to 5 μL min−1 at low driving pressures (<100 mbar) with intimate liquid/solid contact and a continuous recirculation of beads for enhanced target capture efficiencies. The physics of the system presents significant differences as compared to conventional fluidized beds, which are studied here. The effects of magnetic field profile, flow chamber shape and magnetic bead dipolar interactions on flow regimes are investigated, and the different regimes of operation are described. Qualitative rules to obtain optimal operation are deduced. Finally, an exemplary use as a platform for immunocapture is provided, presenting a limit of detection of 0.2 ng mL−1 for 200 μL volume samples.
The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - M. Serra, D. Ferraro, I. Pereiro, J.-L. Viovyabc and S. Descroix
Lab. Chip - 17 3979-3999 - https://doi.org/10.1039/C7LC00582B - 2019
Multiphase and droplet microfluidic systems are growing in relevance in bioanalytical-related fields, especially due to the increased sensitivity, faster reaction times and lower sample/reagent consumption of many of its derived bioassays. Often applied to homogeneous (liquid/liquid) reactions, innovative strategies for the implementation of heterogeneous (typically solid/liquid) processes have recently been proposed. These involve, for example, the extraction and purification of target analytes from complex matrices or the implementation of multi-step protocols requiring efficient washing steps. To achieve this, solid supports such as functionalized particles (micro or nanometric) presenting different physical properties (e.g. magnetic, optical or others) are used for the binding of specific entities. The manipulation of such supports with different microfluidic principles has both led to the miniaturization of existing biomedical protocols and the development of completely new strategies for diagnostics and research. In this review, multiphase and droplet-based microfluidic systems using solid suspensions are presented and discussed with a particular focus on: i) working principles and technological developments of the manipulation strategies and ii) applications, critically discussing the level of maturity of these systems, which can range from initial proofs of concept to real clinical validations.
A new biomimetic assay reveals the temporal role of matrix stiffening in cancer cell invasion
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Ralitza Staneva, Federica Burla, Gijsje H. Koenderink, Stéphanie Descroix, Danijela Matic Vignjevic, Youmna Attieh, and Marine Verhulsel Manuel Théry, Monitoring Editor
Molecular Biology of the Cell - 29 29 - doi.org/10.1091/mbc.E18-01-0068 - 2019
Tumor initiation and growth is associated with significant changes in the surrounding tissue. During carcinoma progression, a global stiffening of the extracellular matrix is observed and is interpreted as a signature of aggressive invasive tumors. However, it is still unknown whether this increase in matrix rigidity promotes invasion and whether this effect is constant along the course of invasion. Here we have developed a biomimetic in vitro assay that enabled us to address the question of the importance of tissue rigidity in the chronology of tumor invasion. Using low concentrations of the sugar threose, we can effectively stiffen reconstituted collagen I matrices and control the stiffening in time with no direct effect on residing cells. Our findings demonstrate that, depending on the timing of its stiffening, the extracellular matrix could either inhibit or promote cancer cell invasion and subsequent metastasis: while matrix stiffening after the onset of invasion promotes cancer cell migration and tumor spreading, stiff matrices encapsulate the tumor at an early stage and prevent cancer cell invasion. Our study suggests that adding a temporal dimension in in vitro models to analyze biological processes in four dimensions is necessary to fully capture their complexity.
Redox-Triggered Control of Cell Adhesion and Deadhesion on Poly(lysine)-g-poly(ethylene oxide) Adlayers
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Louise Hespel, Julien Dupré de Baubigny, Pierre Lalanne, Simon de Beco, Mathieu Coppey, Catherine Villard, Vincent Humblot, Emmanuelle Marie, and Christophe Tribet
ACS Appl. Bio Mater - 10 4367-4376 - doi.org/10.1021/acsabm.9b00601 - 2019
Spontaneous adsorption of poly(lysine)-g-poly(ethylene glycol) comb-like copolymers (PLL-g-PEG) is a versatile mean to coat substrates with polymer layers that resist cell adhesion. We prepared redox cleavable PLL-g-PEG to switch adhesion on demand. Redox sensitivity was obtained by introducing disulfide linkers between the PLL backbone and PEG strands. This modification was done alone or in combination with an azide end on the PEG strands that enabled in situ conjugations of adhesion peptides or fluorescent labels (by a simple application of commercially available molecules for copper-free click chemistry compatible with cell survival). To balance the functional (adhesion-promoting) vs cell-repellent copolymers, mixed layers of adjusted compositions were obtained by coadsorption from mixed solutions of the cleavable copolymer with noncleavable and repellant PLL-g-PEG. The deposition of copolymers and quantitative cleavage as triggered by reductive conditions (application of solutions of tris(carboxyethyl)phosphine, dithiothreitol, or glutathione) were characterized by QCM-D, XPS, and fluorescence microscopy. In cell culture conditions, redox-triggered cleavage was obtained by a nontoxic application of TCEP for a few minutes, enabling either to release cell attachment points (i.e., cleavage of RGD-presenting areas) or to “open” nonspecific adherent areas (i.e., transition from PEG-presenting areas to adherent PLL-like coatings).
Amperometric detection of diclofenac at a nano-structured multi-wall carbon nanotubes sensing
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Cyrine Slim, Nisrine Tlili, Cyrille Richard, Sophie Griveau, Fethi Bedioui
ELSEVIER - 107 107454 - doi:ff10.1016/j.inoche.2019.107454 - 2019
COOH-functionalized multi-walled carbon nanotubes (f-MWCNTs) film coated on glassy carbon electrode (GCE) were prepared, and the detection of diclofenac (DCF) was investigated on by cyclic voltammetry and amperometry. The results showed that the nano-structured electrodes exhibit good analytical performances towards the electrochemical oxidation of DCF with a detection limit of 0.1 µM and a sensitivity of 0.06 µA . µM-1 within a dynamic concentration range varying from 2 μM to 15 µM. Keywords: diclofenac; multi-walled carbon nanotubes; amperometry, detection
Amperometric detection of diclofenac at a nano-structured multi-wall carbon nanotubes sensing films
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Cyrine Slima, Nisrine Tlilia, Cyrille Richard, Sophie Griveaua, FethiBedioui
ELSEVIER - 107 107454 - doi.org/10.1016/j.inoche.2019.107454 - 2019
COOH-functionalized multi-walled carbon nanotubes (f-MWCNTs) film coated on glassy carbon electrode (GCE) were prepared, and the detection of diclofenac (DCF) was investigated by cyclic voltammetry and amperometry. The results showed that the nano-structured electrodes exhibit good analytical performances towards the electrochemical oxidation of DCF with a detection limit of 0.1 μM and a sensitivity of 0.06 μA. μM−1 within a dynamic concentration range varying from 2 μM to 15 μM
Stress field inside the bath determines dip coating with yield-stress fluids in cylindrical geometry
Laboratoire Matériaux Innovants pour l'Energie - Wilbert J Smit, Christophe Kusina, Jean-François Joanny, Annie Colin
Phys. Rev. Lett. - 123(14) 148002 - - 2019
We study experimentally and theoretically the thickness of the coating obtained by pulling out a rod from a reservoir of yield-stress fluid. Opposite to Newtonian fluids, the coating thickness for a fluid of large enough yield stress is determined solely by the flow inside the reservoir and not by the flow inside the meniscus. The stress field inside the reservoir determines the thickness of the coating layer. The thickness is observed to increase nonlinearly with the sizes of the rod and of the reservoir. We develop a theoretical framework that describes this behavior and allows us to precisely predict the coating thickness.
Chasing Aqueous Biphasic Systems from Simple Salts by Exploring the LiTFSI/LiCl/H2O Phase Diagram
Laboratoire Matériaux Innovants pour l'Energie - Nicolas Dubouis, Chanbum Park, Michael Deschamps, Soufiane Abdelghani-Idrissi, Matej Kanduč, Annie Colin, Mathieu Salanne, Joachim Dzubiella, Alexis Grimaud, Benjamin Rotenberg
ACS Central Science - 5 640-643 - doi.org/10.1021/acscentsci.8b00955 - 2019
Aqueous biphasic systems (ABSs), in which two aqueous phases with different compositions coexist as separate liquids, were first reported more than a century ago with polymer solutions. Recent observations of ABS forming from concentrated mixtures of inorganic salts and ionic liquids raise the fundamental question of how “different” the components of such mixtures should be for a liquid–liquid phase separation to occur. Here we show that even two monovalent salts sharing a common cation (lithium) but with different anions, namely, LiCl and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), may result in the formation of ABSs over a wide range of compositions at room temperature. Using a combination of experimental techniques and molecular simulations, we analyze the coexistence diagram and the mechanism driving the phase separation, arising from the different anion sizes. The understanding and …
Inkjet Printing of Latex-Based High-Energy Microcapacitors
Laboratoire Matériaux Innovants pour l'Energie - Fernando José Torres-Canas Jinkai Yuan Isabelle Ly Wilfrid Neri
Advanced Functional Materials - 29(31) 1901884 - DOI: 10.1002/adfm.201901884 - 2019
Micro-energy storage devices are appealing, and highly demanded for diverse miniaturized electronic devices, ranging from microelectromechanical system, robotics, to sensing microsystems and wearable electronics. However, making high-energy microcapacitors with currently available printing technologies remains challenging. Herein, we show the possibility to use latex polyvinylidene fluoride (PVDF) as aqueous ink for making dielectric capacitors on the microscale. The dielectric properties of printed microcapacitors can be optimized based on a novel approach, i.e., mixing PVDF latex with polyvinyl alcohol (PVA) to realize dielectric organic nanocomposites. The PVA prevents the coalescence of PVDF nanoparticles and serves as a continuous matrix phase with high dielectric breakdown strength. While the well-dispersed PVDF nanoparticles serve as highly polarizable and isolated domains, providing large electric displacement under high fields. Consequently, a high discharged energy density of 12 Jcm-3 is achieved at 550 MVm-1. These printed microcapacitors demonstrate mechanical robustness and dielectric stability over time.
Absence of giant dielectric permittivity in graphene oxide materials
Laboratoire Matériaux Innovants pour l'Energie - Alfonso, M. Yuan, J. Tardani, F. Neri, W. Colin, A.; Poulin, P.
Journal of Physics Materials - 2(4) 045002 - DOI:10.1088/2515-7639/ab2666 - 2019
Graphene oxide (GO) is considered as a promising component for electronics because of its unique anisotropy, easy processing and sometimes claimed giant permittivity. The latter would arise from an enhanced electronic polarizability due to the presence of functional groups at the surface and edge of GO flakes. As a matter of fact, a number of publications have reported a very large permittivity of GO materials. Nevertheless, the reported values for the intrinsic relative permittivity vary significantly from a few units to several millions. Such variability raises a critical question on the actual and intrinsic permittivity of GO, and on difficulties of measurements due to the polarization of the electrodes. We presently report impedance spectroscopy characterizations of GO solutions with different solvents. We find very large capacitance at low frequencies, in agreement with previous reports. However, we also show that these results can be interpreted without considering a giant permittivity of GO. Actually, a simple equivalent circuit model allows us to confirm that GO does not have a giant permittivity. We conclude that GO can be used as an electrolyte for supercapacitors, or as a precursor for electrically conductive graphene-based materials, but not as an efficient additive to raise the permittivity of solvents or composites for electronics and energy storage applications.
A new way to measure viscosity in droplet-based microfluidics for high throughput analysis
Laboratoire Matériaux Innovants pour l'Energie - Estelle André, Nicolas Pannacci, Christine Dalmazzone, Annie Colin
Soft Matter - 15 504-514 - https://doi.org/10.1039/C8SM02372G - 2019
In this work, we propose a new way to measure the viscosity of samples in a microfluidic device. By analysing the shape of droplets after an expansion, we can measure the viscosity of the phase inside the droplet knowing the surface tension between the two liquids, the flow rate, the geometry of the channel and the viscosity of the continuous phase. This work paves the way for future high throughput studies in the framework of digital microfluidics.
Harvesting mechanical energy by means of MEMS-based electrostrictive microgenerators
Laboratoire Matériaux Innovants pour l'Energie - H. Nesser; H. Debéda; J. Yuan; A. Colin; P. Poulin; I. Dufour; C. Ayela
2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO) - 19299918 - DOI: 10.23919/RADIO46463.2019.8968880 - 2019
Recent advances in the field of microelectromechanical systems (MEMS) have generated great interest in the substitution of inorganic microcantilevers by organic ones, due to their low cost, high flexibility and a simplified fabrication by means of printing methods. Here, we present the integration of electrostrictive nanocomposites into organic microcantilever resonators specifically designed for mechanical energy harvesting from ambient vibrations. Strain sensitive nanocomposite materials composed of reduced graphene oxide (rGO) dispersed in polydimethylsiloxane (PDMS) are integrated into all-organic MEMS by means of an innovative low-cost and environment friendly process by combining printing techniques and xurography. The fabricated microcantilevers are promising candidates for mechanical energy harvesting as at their first resonant mode (15 Hz), they generate an electrical power density of 6 μW/cm 3 .
Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors
Laboratoire Matériaux Innovants pour l'Energie - Mickaël Pruvost, Wilbert J Smit, Cécile Monteux, Philippe Poulin, Annie Colin
npj Flexible Electronics - 3 7 - doi.org/10.1038/s41528-019-0052-6 - 2019
Flexible low-pressure sensors ( <10 kPa) are required in areas as diverse as blood-pressure monitoring, human–computer interactions, robotics, and object detection. For applications, it is essential that these sensors combine flexibility, high sensitivity, robustness, and low production costs. Previous works involve surface micro-patterning, electronic amplification (OFET), and hydrogels. However, these solutions are limited as they involve complex processes, large bias voltages, large energy consumption, or are sensitive to evaporation. Here, we report a major advance to solve the challenge of scalable, efficient and robust e-skin. We present an unconventional capacitive sensor based on composite foam materials filled with conductive carbon black particles. Owing to the elastic buckling of the foam pores, the sensitivity exceeds 35 kPa−1 for pressure <0.2 kPa. These performances are one order of magnitude higher than the ones previously reported. These materials are low-cost, easy to prepare, and display high capacitance values, which are easy to measure using low-cost electronics. These materials pave the road for the implementation of e-skin in commercialized applications.
Inkjet Printing of Latex‐Based High‐Energy Microcapacitors
Laboratoire Matériaux Innovants pour l'Energie - Fernando Torres‐Canas Jinkai Yuan Isabelle Ly Wilfrid Neri Annie Colin Philippe Poulin
First published - 29(31) 1901884 - doi.org/10.1002/adfm.201901884 - 2019
Microenergy storage devices are appealing and highly demanded for diverse miniaturized electronic devices, ranging from microelectromechanical system, robotics, to sensing microsystems and wearable electronics. However, making high‐energy microcapacitors with currently available printing technologies remains challenging. Herein, the possibility to use latex polyvinylidene fluoride (PVDF) as aqueous ink for making dielectric capacitors at the microscale is shown. The dielectric properties of printed microcapacitors can be optimized based on a novel approach, i.e., mixing PVDF latex with polyvinyl alcohol (PVA) to realize dielectric organic nanocomposites. The PVA prevents the coalescence of PVDF nanoparticles and serves as a continuous matrix phase with high dielectric breakdown strength. While the well‐dispersed PVDF nanoparticles serve as highly polarizable and isolated domains, providing large electric displacement under high fields. Consequently, a high discharged energy density of 12 J cm−3 is achieved at 550 MV m−1. These printed microcapacitors demonstrate mechanical robustness and dielectric stability over time.
Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics
Laboratoire Microfluidique MEMS et nanostructures - Antoine Blin, Anne Le Goff, Aurélie Magniez, Sonia Poirault-Chassac, Bruno Teste, Géraldine Sicot, Kim Anh Nguyen, Feriel S. Hamdi, Mathilde Reyssat & Dominique Baruch
Nature - Scientific Reports 6 21700 - DOI: 10.1038/srep21700 - 2019
We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.
Universal diagram for the kinetics of particle deposition in micro channels
Laboratoire Microfluidique MEMS et nanostructures - C.M. Cejas, F. Monti, M. Truchet, J.-P. Burnouf, P. Tabeling
Phys. Rev. E - 98 62606 - - 2019
Universal diagram for the kinetics of particle deposition in micro channels.
Foam as a self-assembling amorphous photonic band gap material
Laboratoire Microfluidique MEMS et nanostructures - View ORCID ProfileJoshua Ricouvier, Patrick Tabeling, and Pavel Yazhgur
Phys. Fluids - 116 (19) 9202-9207 - doi.org/10.1073/pnas.1820526116 - 2019
We show that slightly polydisperse disordered 2D foams can be used as a self-assembled template for isotropic photonic band gap (PBG) materials for transverse electric (TE) polarization. Calculations based on in-house experimental and simulated foam structures demonstrate that, at sufficient refractive index contrast, a dry foam organization with threefold nodes and long slender Plateau borders is especially advantageous to open a large PBG. A transition from dry to wet foam structure rapidly closes the PBG mainly by formation of bigger fourfold nodes, filling the PBG with defect modes. By tuning the foam area fraction, we find an optimal quantity of dielectric material, which maximizes the PBG in experimental systems. The obtained results have a potential to be extended to 3D foams to produce a next generation of self-assembled disordered PBG materials, enabling fabrication of cheap and scalable photonic devices.
Fibrin-Targeted Polymerized Shell Microbubbles as Potential Theranostic Agents for Surgical Adhesions
Laboratoire Microfluidique MEMS et nanostructures - Catherine A. Gormley, Benjamin J. Keenan, Jo Ann Buczek-Thomas,† Amanda C. S. N. Pessoa, Jiang Xu, Fabrice Monti, Patrick Tabeling, R. Glynn Holt, Jon O. Nagy, and Joyce Y. Wong
Langmuir - 35(31) 10061–10067 - doi: 10.1021/acs.langmuir.8b03692 - 2019
The development of new therapies for surgical adhesions has proven to be difficult as there is no consistently effective way to assess treatment efficacy in clinical trials without performing a second surgery, which can result in additional adhesions. We have developed lipid microbubble formulations that use a short peptide sequence, CREKA, to target fibrin, the molecule that forms nascent adhesions. These targeted polymerized shell microbubbles (PSMs) are designed to allow ultrasound imaging of early adhesions for diagnostic purposes and for evaluating the success of potential treatments in clinical trials while acting as a possible treatment. In this study, we show that CREKA-targeted microbubbles preferentially bind fibrin over fibrinogen and are stable for long periods of time (~48 h), that these bound microbubbles can be visualized by ultrasound, and that neither these lipid-based bubbles nor their diagnostic-ultrasound-induced vibrations damage mesothelial cells in vitro. Moreover, these bubbles show the potential to identify adhesionlike fibrin formations and may hold promise in blocking or breaking up fibrin formations in vivo.


638 publications.