Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :
HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition.
Laboratoire Physique des biomolécules - Fiorini, Francesca; Robin, Jean-Philippe; Kanaan, Joanne; Borowiak, Malgorzata; Croquette, Vincent; Le Hir, Hervé; Jalinot, Pierre; Mocquet, Vincent
Nat Commun - 9 1 - 10.1038/s41467-017-02793-6 - 2018
Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome.
HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition.
Laboratoire Physique des biomolécules - Fiorini, Francesca; Robin, Jean-Philippe; Kanaan, Joanne; Borowiak, Malgorzata; Croquette, Vincent; Le Hir, Hervé; Jalinot, Pierre; Mocquet, Vincent
Nat Commun - 9 1 - 10.1038/s41467-017-02793-6 - 2018
Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome.
Macroscale fluorescence imaging against autofluorescence under ambient light.
Laboratoire Physique des biomolécules - Zhang, Ruikang; Chouket, Raja; Plamont, Marie-Aude; Kelemen, Zsolt; Espagne, Agathe; Tebo, Alison G; Gautier, Arnaud; Gissot, Lionel; Faure, Jean-Denis; Jullien, Ludovic; Croquette, Vincent; Le Saux, Thomas
Light - 7 97 - 10.1038/s41377-018-0098-6 - 2018
Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging.
Macroscale fluorescence imaging against autofluorescence under ambient light.
Laboratoire Physique des biomolécules - Zhang, Ruikang; Chouket, Raja; Plamont, Marie-Aude; Kelemen, Zsolt; Espagne, Agathe; Tebo, Alison G; Gautier, Arnaud; Gissot, Lionel; Faure, Jean-Denis; Jullien, Ludovic; Croquette, Vincent; Le Saux, Thomas
Light - 7 97 - 10.1038/s41377-018-0098-6 - 2018
Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging.
Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis
Laboratoire Physique des biomolécules - Duvernoy, Marie-Cécilia; Mora, Thierry; Ardré, Maxime; Croquette, Vincent; Bensimon, David; Quilliet, Catherine; Ghigo, Jean-Marc; Balland, Martial; Beloin, Christophe; Lecuyer, Sigoléne; Desprat, Nicolas
Nat Commun - 9 1120 - 10.1038/s41467-018-03446-y - 2018
Surface colonization underpins microbial ecology on terrestrial environments. Although factors that mediate bacteria-substrate adhesion have been extensively studied, their spatiotemporal dynamics during the establishment of microcolonies remains largely unexplored. Here, we use laser ablation and force microscopy to monitor single-cell adhesion during the course of microcolony formation. We find that adhesion forces of the rod-shaped bacteria Escherichia coli and Pseudomonas aeruginosa are polar. This asymmetry induces mechanical tension, and drives daughter cell rearrangements, which eventually determine the shape of the microcolonies. Informed by experimental data, we develop a quantitative model of microcolony morphogenesis that enables the prediction of bacterial adhesion strength from simple time-lapse measurements. Our results demonstrate how patterns of surface colonization derive from the spatial distribution of adhesive factors on the cell envelope.
RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death
Laboratoire pour la biologie quantitative du développement - Kutscher LM, Keil W, Shaham S
Dev Cell - 47(2) 222-238 - doi: 10.1016/j.devcel.2018.08.015. - 2018
Clearance of dying cells is essential for development and homeostasis. Conserved genes mediate apoptotic cell removal, but whether these genes control non-apoptotic cell removal is a major open question. Linker cell-type death (LCD) is a prevalent non-apoptotic developmental cell death process with features conserved from C. elegans to vertebrates. Using microfluidics-based long-term in vivo imaging, we show that unlike apoptotic cells, the C. elegans linker cell, which dies by LCD, is competitively phagocytosed by two neighboring cells, resulting in cell splitting. Subsequent cell elimination does not require apoptotic engulfment genes. Rather, we find that RAB-35 GTPase is a key coordinator of competitive phagocytosis onset and cell degradation. RAB-35 binds CNT-1, an ARF-6 GTPase activating protein, and removes ARF-6, a degradation inhibitor, from phagosome membranes. This facilitates phosphatidylinositol-4,5-bisphosphate removal from phagosome membranes, promoting phagolysosome maturation. Our studies suggest that RAB-35 and ARF-6 drive a conserved program eliminating cells dying by LCD.
High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels
Laboratoire Procédés - Plasmas - Microsystèmes - XiRao, CédricGuyo, StephanieOgnier, Bradley Da Silva, Chenglin Chu, MichaëlTatoulian, Ali AbouHassan
Applied Surface Science - 439 272-281 - https://doi.org/10.1016/j.apsusc.2018.01.009 - 2018
Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

Isothermal crystallization of glycine in semi-continuous mode by anti-solvent addition
Laboratoire Procédés - Plasmas - Microsystèmes - Wail El Bazi, Marie-Thérèse Moufarej Abou Jaoude, Catherine Porte, Isabelle Mabille
Journal of Crystal Growth - 3 498 - DOI: 10.1016/j.jcrysgro.2018.06.013 - 2018
This article focuses on the isothermal semi-continuous crystallization of glycine aqueous solution by adding an anti-solvent, ethanol. The effect of the ethanol concentration on solubility and the impact of the ethanol flow rate on the metastable zone width and on the size distribution of the crystals were investigated. The study showed that increasing the ethanol concentration in the medium decreases solubility for the studied temperatures and that increasing the ethanol flow rate causes a widening of the metastable zone without inducing any noticeable effect on the crystals’ size distribution. In addition, nucleation kinetic models were determined for two temperatures (30 and 56 °C).
Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes
Laboratoire Procédés - Plasmas - Microsystèmes - Julien Wengler, Stéphanie Ognier, Mengxue Zhang, Etienne Levernier, Cedric Guyon, Cyril Ollivier, Louis Fensterbank and Michael Tatoulian
Reaction Chemistry & Engineering - 3 930-941 - https://doi.org/10.1039/C8RE00122G - 2018
The present paper reports the integration of nonthermal plasma into a biphasic gas–liquid microfluidic chip. It evaluates the potential of plasma activation to become a synthetic tool in organic chemistry, operating under mild conditions (room temperature, atmospheric pressure) and without a catalyst. Few preceding works on plasma chemistry involved a liquid phase and none of them was able to handle the high reactivity of plasma to achieve both high conversion rates and selective reactions. We fabricated a glass-polymer microfluidic chip comprising a one metre long serpentine channel, in which a parallel gas–liquid flow was stabilized thanks to a specific step-like cross-sectional shape. Transparent ITO electrodes, deposited on both sides of the chip and linked to an AC high voltage source, produced a dielectric barrier discharge along the channel. We assessed the behaviour of the flow through optical observations and characterized the discharge through electrical measurements and real time intensified-CCD monitoring. We report the successful treatment of liquid cyclohexane with oxygen plasma inside our chip. The GC analysis of the outflowing liquid revealed only a partial oxidation of cyclohexane into a mixture of cyclohexanol and cyclohexanone (industrially known as “KA oil”), and cyclohexyl hydroperoxide, with a total selectivity above 70% and conversion up to 30%. This indicates that alkanes can be activated and functionalized by means of plasma discharges, in a controlled way. In that respect, we claim to have successfully overcome some of the barriers to industrially relevant plasma chemistry. We believe that the combined use of plasma and microfluidic technologies is essential to the development of this new field of research.
Cover Picture: Plasma Process. Polym
Laboratoire Procédés - Plasmas - Microsystèmes - Fatemeh Rezaei Yury Gorbanev Michael Chys Anton Nikiforov Stijn W. H. Van Hulle Paul Cos Annemie Bogaerts Nathalie De Geyter
First published - 15 6 - doi.org/10.1002/ppap.201870013 - 2018
Front Cover: Electrospinning solutions of polylactic acid in chloroform and 5,5‐N‐dimethylformamide were subjected to preelectrospinning plasma treatment (PEPT). A broad range of spectroscopic analytical techniques, mainly EEM and EPR, were performed to investigate the plasma‐induced chemistry in the organic solutions. The enhanced conductivity of the solutions was ascribed to the formation of plasma‐induced acids during PEPT. The synergistic effect of chemical changes leads to poly lactic acid nanofibers with uniform morphology.

Further details can be found in the article by Fatemeh Rezaei et al. (e1700226).
Online coupling of immunoextraction, digestion, and microliquid chromatography-tandem mass spectrometry for the analysis of sarin and soman-butyrylcholinesterase adducts in human plasma
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - Maud Bonichon, Valentina Valbi, Audrey Combès, Charlotte Desoubries, Anne Bossée & Valérie Pichon
- 410 pages1039–1051 - doi.org/10.1007/s00216-017-0640-z - 2018
Organophosphorus nerve agent (OPNA) adducts formed with human butyrylcholinesterase (HuBuChE) can be used as biomarker of OPNA exposure. Indeed, intoxication by OPNAs can be confirmed by the LC/MS2 analysis of a specific HuBuChE nonapeptide on which OPNAs covalently bind. A fast, selective, and highly sensitive online method was developed to detect sarin and soman adducts in plasma, including immunoextraction by anti-HuBuChE antibodies, pepsin digestion on immobilized enzyme reactors (IMER), and microLC/MS2 analysis of the OPNA adducts. The potential of three different monoclonal antibodies, covalently grafted on sepharose, was compared for the extraction of HuBuChE. The online method developed with the most promising antibodies allowed the extraction of up to 100% of HuBuChE contained in plasma and the digestion of 45% of it in less than 40 min. Moreover, OPNA-HuBuChE adducts, aged OPNA adducts, and unadducted HuBuChE could be detected (with S/N > 2000), even in plasma spiked with a low concentration of OPNA (10 ng mL−1). Finally, the potential of this method was compared to approaches involving other affinity sorbents, already described for HuBuChE extraction.
Human odor and forensics: Towards Bayesian suspect identification using GC × GC–MS characterization of hand odor
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - lVincent Cuzuel Roman Leconte Guillaume Cognon Didier Thiébaut Jérôme Vial Charles Sauleau Isabelle Rivals
Journal of Chromatography B - 1092 379-385 - https://doi.org/10.1016/j.jchromb.2018.06.018 - 2018
A new method for identifying people by their odor is proposed. In this approach, subjects are characterized by a GC × GC–MS chromatogram of a sample of their hand odor. The method is based on the definition of a distance between odor chromatograms and the application of Bayesian hypothesis testing. Using a calibration panel of subjects for whom several odor chromatograms are available, the densities of the distance between chromatograms of the same person, and between chromatograms of different persons are estimated. Given the distance between a reference and a query chromatogram, the Bayesian framework provides an estimate of the probability that the corresponding two odor samples come from the same person. We tested the method on a panel that is fully independent from the calibration panel, with promising results for forensic applications.
Active modulation in neat carbon dioxide packed column comprehensive two-dimensional supercritical fluid chromatography
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - Orjen Petkovic Pierre Guibal Patrick Sassiat Jérôme Vial Didier Thiébaut
ELSEVIER - 1536 176-184 - https://doi.org/10.1016/j.chroma.2017.08.063 - 2018
After demonstrating in a first paper the feasibility of SFCxSFC without decompression of the mobile phase, a modified interface has been developed in order to perform active modulation between the two SFC dimensions. In this paper, it is shown that the new interface enabled independent control of modulation parameters in SFCxSFC and performed a band compression effect of solutes between the two SFC dimensions. The effectiveness of this new modulation process was studied using a Design of Experiments. The SFCxSFC prototype was applied to the analysis of a real oil sample to demonstrate the benefits of the active modulator; in comparison to our previous results obtained without active modulation, better separation was obtained with the new interface owing to the peak compression occurring in the modulator.
Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - Imadeddine Azzouz, Yamina Ghozlane Habba, Martine Capochichi-Gnambodoe, Frédéric Marty, Jérôme Vial, Yamin Leprince-Wang & Tarik Bourouina
Microsystems & Nanoengineering - 4 17093 - 10.1038/micronano.2017.93 - 2018
This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic reactor. The microreactor integrates Zinc oxide nanowires (ZnO NWs) in situ grown acting as an efficient photocatalytic nanomaterial layer. Direct growth of ZnO NWs within the microfluidic chamber brings this photocatalytic medium at the very close vicinity of the water flow path, hence minimizing the required interaction time to produce efficient purification performance. We demonstrate a degradation efficiency of 95% in <5 s of residence time in one-pass only. According to our estimates, it becomes attainable using microfluidic reactors to produce decontamination of merely 1 l of water per day, typical of the human daily drinking water needs. To conduct our experiments, we have chosen a laboratory-scale case study as a seed for addressing the health concern of water contamination by volatile organic compounds (VOCs), which remain difficult to remove using alternative decontamination techniques, especially those involving water evaporation. The contaminated water sample contains mixture of five pollutants: Benzene; Toluene; Ethylbenzene; m–p Xylenes; and o-Xylene (BTEX) diluted in water at 10 p.p.m. concentration of each. Degradation was analytically monitored in a selective manner until it falls below 1 p.p.m. for each of the five pollutants, corresponding to the maximum contaminant level (MCL) established by the US Environmental Protection Agency (EPA). We also report on a preliminary study, investigating the nature of the chemical by-products after the photocatalytic VOCs degradation process.
Analytical methods for the monitoring of post-combustion CO2 capture process using amine solvents: A review
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - Lorena Cuccia José Dugay Domitille Bontemps Myriam Louis-Louisy Jérôme Vial
ELSEVIER - 4 17093 - https://doi.org/10.1016/j.ijggc.2018.03.014 - 2018
Post-combustion CO2 capture is considered to be the most promising technology to limit the CO2 emissions from existing fossil fuel power plants. One of the main problems associated with the CO2 capture process is the degradation of amine solvents, which can negatively impact both human health and the environment. Degradation products are formed in the liquid phase of the solvent, but can also be emitted with the gaseous effluents, increasing the need for monitoring strategies. The present review proposes a critical analysis of the literature concerning the analytical strategies developed in the field of post-combustion capture to identify and quantify the main classes of degradation products formed; specifically amines, amides, aldehydes, nitrosamines and organic acids. Regarding the liquid phase, the principal analytical methods involved are Liquid Chromatography (LC) and Gas Chromatography (GC) for the analysis of amines and Ionic Chromatography (IC) for the analysis of organic and inorganic acids. Concerning aldehydes, the most described method is derivatization of the compounds with 2,4-dinitrophenylhydrazine prior to LC analysis. In order to monitor the gaseous effluents, four methods have been described: FTIR, implementation of impingers, online MS analysis and sampling on solid sorbents.
Conventional and Neo-Antigenic Peptides Presented by β Cells Are Targeted by Circulating Naïve CD8+ T Cells in Type 1 Diabetic and Healthy Donors.
Laboratoire Spectrométrie de masse biologique et protéomique - Sergio Gonzalez-Duque , Marie Eliane Azoury , Maikel L Colli , Georgia Afonso , Jean-Valery Turatsinze , Laura Nigi , Ana Ines Lalanne , Guido Sebastiani , Alexia Carré , Sheena Pinto, Slobodan Culina , Noémie Corcos , Marco Bugliani , Pier
Cell Metab - 28(6) 946-960.e6. - doi: 10.1016/j.cmet.2018.07.007. - 2018
Although CD8+ T-cell-mediated autoimmune β cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by β cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known β cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by β cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.
Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating Naïve CD8+ T Cells in Type 1 Diabetic and Healthy Donors
Laboratoire Spectrométrie de masse biologique et protéomique - Sergio Gonzalez-Duque , Marie Eliane Azoury , Maikel L Colli , Georgia Afonso , Jean-Valery Turatsinze , Laura Nigi , Ana Ines Lalanne , Guido Sebastiani , Alexia Carré , Sheena Pinto, Slobodan Culina , Noémie Corcos , Marco Bugliani , Pier
Cell Metab - 28(6) 946-960.e6. - doi: 10.1016/j.cmet.2018.07.007. - 2018
Although CD8+ T-cell-mediated autoimmune β cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by β cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known β cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by β cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.
Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6
Laboratoire Spectrométrie de masse biologique et protéomique - Naganand Rayapuram, Jean Bigeard, Hanna Alhoraibi, Ludovic Bonhomme, Anne-Marie Hesse, Joëlle Vinh, Heribert Hirt, Delphine Pflieger
Cell Metab - 17(1) 61-80 - DOI: 10.1074/mcp.RA117.000135 - 2018
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4, and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. One hundred fifty-two peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar nonfermenting (SnRK) protein kinases
Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis
Laboratoire Spectrométrie de masse biologique et protéomique - Galdiero F, Bello AM, Spina A, Capiluongo A, Liuu S, De Marco M, Rosati A, Capunzo M, Napolitano M, Vuttariello E, Monaco M, Califano D, Turco MC, Chiappetta G, Vinh J, Chiappetta G
Cell Metab - 9(8) 8016-8026 - DOI: 10.18632/oncotarget.23858 - 2018
BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.
Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver
Laboratoire Spectrométrie de masse biologique et protéomique - Séverine Le Manach , Benoit Sotton , Hélène Huet , Charlotte Duval , Alain Paris , Arul Marie , Claude Yépremian , Arnaud Catherine , Lucrèce Mathéron , Joelle Vinh , Marc Edery , Benjamin Marie
Environmental pollution - 234 523-537 - doi: 10.1016/j.envpol.2017.11.011 - 2018
Cyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity. To better understand the effects of cyanobacterial blooms on fish, medaka fish (Oryzias latipes) were sub-chronically exposed to either non-MC-producing or MC-producing living strains and, for this latter, to its subsequent MC-extract of Microcystis aeruginosa. Toxicological effects on liver have been evaluated through the combined approach of histopathology and 'omics' (i.e. proteomics and metabolomics). All treatments induce sex-dependent effects at both cellular and molecular levels. Moreover, the modalities of exposure appear to induce differential responses as the direct exposure to the cyanobacterial strains induce more acute effects than the MC-extract treatment. Our histopathological observations indicate that both non-MC-producing and MC-producing strains induce cellular impairments. Both proteomic and metabolomic analyses exhibit various biological disruptions in the liver of females and males exposed to strain and extract treatments. These results support the hypothesis that M. aeruginosa is able to produce bioactive peptides, other than MCs, which can induce toxicological effects in fish liver. Moreover, they highlight the importance of considering cyanobacterial cells as a whole to assess the realistic environmental risk of cyanobacteria on fish.

515 publications.