Laboratoire :
Auteur :
Revue :
Année :

Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells.
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Chabaud M, Heuzé ML, Bretou M, Vargas P, Maiuri P, Solanes P, Maurin M, Terriac E, Le Berre M, Lankar D, Piolot T, Adelstein RS, Zhang Y, Sixt M, Jacobelli J, Bénichou O, Voituriez R, Piel M, Lennon-Duménil A-M
Nat Commun - 0.25 7526 - DOI: 110.1016/j.jim.2015.12.005 - 2015
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space.
Ratchetaxis:Long-Range Directed Cell Migration by Local Cues
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Caballero D, Comelles J, Piel M, Voituriez R, Riveline D.
Trends Cell Biol. - 25(12) 815-27 - doi: 10.1016/j.tcb.2015.10.009 - 2015
Study ofdendritic cell migration using micro-fabrication
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Vargas P, Chabaud M, Thiam HR, Lankar D, Piel M, Lennon-Dumenil AM
J Immunol Methods - 1759(15) 30071-5 - doi: 10.1016/j.jim.2015.12.005 - 2015
Droplets in Microchannels: Dynamical Properties of the Lubrication Film
Laboratoire Biophysique et Evolution - Axel Huerre, Olivier Theodoly, Alexander M. Leshansky, Marie-Pierre Valignat, Isabelle Cantat and Marie-Caroline Jullien
Phys. Rev. Lett. - 115 (064501) 64501 - - 2015
We study the motion of droplets in a confined, micrometric geometry, by focusing on the lubrication film between a droplet and a wall. When capillary forces dominate, the lubrication film thickness evolves nonlinearly with the capillary number due to the viscous dissipation between the meniscus and the wall. However, this film may become thin enough (tens of nanometers) that intermolecular forces come into play and affect classical scalings. Our experiments yield highly resolved topographies of the shape of the interface and allow us to bring new insights into droplet dynamics in microfluidics. We report the novel characterization of two dynamical regimes as the capillary number increases: (i) at low capillary numbers, the film thickness is constant and set by the disjoining pressure, while (ii) above a critical capillary number, the interface behavior is well described by a viscous scenario. At a high surfactant concentration, structural effects lead to the formation of patterns on the interface, which can be used to trace the interface velocity, that yield direct confirmation of the boundary condition in the viscous regime.
Prebiotic network evolution: six key parameters
Laboratoire Biophysique et Evolution - Philippe Nghe,a Wim Hordijk,b Stuart A. Kauffman,c Sara I. Walker,d Francis J. Schmidt,e Harry Kemble,a Jessica A. M. Yeatesf and Niles Lehman
Molecular Systems Biology - 11 3206-3217 - DOI: 10.1039/C5MB00593K - 2015
The origins of life likely required the cooperation among a set of molecular species interacting in a network. If so, then the earliest modes of evolutionary change would have been governed by the manners and mechanisms by which networks change their compositions over time. For molecular events, especially those in a pre-biological setting, these mechanisms have rarely been considered. We are only recently learning to apply the results of mathematical analyses of network dynamics to prebiotic events. Here, we attempt to forge connections between such analyses and the current state of knowledge in prebiotic chemistry. Of the many possible influences that could direct primordial network, six parameters emerge as the most influential when one considers the molecular characteristics of the best candidates for the emergence of biological information: polypeptides, RNA-like polymers, and lipids. These parameters are viable cores, connectivity kinetics, information control, scalability, resource availability, and compartmentalization. These parameters, both individually and jointly, guide the aggregate evolution of collectively autocatalytic sets. We are now in a position to translate these conclusions into a laboratory setting and test empirically the dynamics of prebiotic network evolution.
A versatile technology for droplet-based microfluidics: thermomechanical actuation
Laboratoire Biophysique et Evolution - Axel Huerre, Hannah Williams, Bastien Fournié and Marie-Caroline Jullien
Lab. Chip - 15 2133–2139 | 2133 - - 2015
Random fluctuations, metabolism and growth at the single-cell level
Laboratoire Biophysique et Evolution - Nghe, P., Boulineau, S., & Tans, S. J.
Med Sci (Paris). - 1(3) 233 - - 2015
Equation of state of PEG/PEO in good solvent. Comparison between a one- parameter EOS and experiments
Laboratoire Colloïdes et Matériaux Divisés - Joaquim Li, Martin Turesson, Caroline Anderberg Haglund, Bernard Cabane, Marie Skepö
JPOL - 3861(15) 205-213 - doi:10.1016/j.polymer.2015.10.056 - 2015
We investigate, through osmotic pressure measurements, the validity of the single-parameter equation of state (EOS) for solutions of polyethylene glycols in water, by Cohen et al.1,2 We show that it is physically meaningful and that a reasonable good correspondence between the osmotic pressures for PEG35 in large range of concentrations is obtained. We also take the chain length dependence into account in our analysis, as suggested by Cohen et al. By recalculating the experimental pressures in the paper by Jönsson et al.3 applying the new calibration curve, which is based on the experimental results obtained in this study and the EOS obtained by Cohen et al., there is almost a perfect correspondence between the simulations and the experiments. These results have implications for correctly probing macromolecular interactions in wide range of systems when applying the osmotic stress method.
Filtration of precipitated silica aggregates: Length scales, percolation threshold and yielding behaviour
Laboratoire Colloïdes et Matériaux Divisés - Deka Moussa Ragueh, Martine Meireles, Bernard Cabane, Jérémie Gummel
Separation and Purification Technology - 156 2-11 - - 2015
Reinforcing precipitated silica systems have a complex hierarchical structure consisting of a branched network made of connected clusters composed of small silica beads welded together into larger dense aggregates. Here, we study the evolution of such structural features during a filtration process. The typical behaviour is that the cakes formed at constant pressure do not reorganize at local scale during a filtration experiment. Accordingly, the creep resistance of a precipitated silica network is high. Overall, there is a percolation threshold, which appears when the branches are pushed into each other. Once this percolation path is reached, the cake withstands compression over more than a decade of applied pressure. Beyond, it seemed useful to make predictions of the filtration properties knowing the typical length scales – small silica beads, dense aggregates, and consolidation behaviour of the cake. A simple approach introducing the concept of an effective medium approximation into Darcy’s law was tested. This approach treats the network as a pseudo-continuum of porous medium built at two main length scales: the size of dense aggregates and a length scale representing the typical distance between the aggregates. The quality of the fit of experimental filtration rates by this simple model indicates that a description based on a continuous network made of two material phases is accurate.
A Millifluidic Study of Cell-to-Cell Heterogeneity in Growth-Rate and Cell- Division Capability in Populations of Isogenic Cells of Chlamydomonas reinhardtii
Laboratoire Colloïdes et Matériaux Divisés - S. P. Damodaran, S. Eberhard, L. Boitard, J. Garnica Rodriguez, Y. Wang, N. Bremond, J. Baudry, J. Bibette, F. A. Wollman
PLoS One - 10 0118987 - - 2015
Growing microbes in millifluidic droplets
Laboratoire Colloïdes et Matériaux Divisés - L. Boitard, D. Cottinet, N. Bremond, J. Baudry, J. Bibette
Eng. Life Sci. - - - 2015
Emulsion Ripening through Molecular Exchange at Droplet Contacts
Laboratoire Colloïdes et Matériaux Divisés - Kevin Roger, Ulf Olsson, Ralf Schweins, Bernard Cabane
Angew. Chem. Int. Ed - 127 1472-1475 - - 2015
Multiscale electrochemistry of hydrogels embedding conductive nanotubes
Laboratoire Colloïdes et Matériaux Divisés - J.-M. Noël, L. Mottet, N. Bremond, Ph. Poulin, C. Combellas, J. Bibette and F. Kanoufi
Chem. Sci - - - 2015
Reactivity, swelling and aggregation of mixed-size silicate nanoplatelets
Laboratoire Colloïdes et Matériaux Divisés - M Segad, B Cabane, Bo Jönsson
Nanoscale - 7 16290-16297 - - 2015
Nature of flocculation and tactoid formation in montmorillonite: the role of pH
Laboratoire Colloïdes et Matériaux Divisés - Segad, T Åkesson, B Cabane, B Jönsson
Phys. Chem. - 17 29608-29615 - - 2015
Structural heterogeneity of milk casein micelles: A SANS contrast variation study
Laboratoire Colloïdes et Matériaux Divisés - A. Bouchoux,J. Ventureira, G. Gésan-Guiziou, F. Garnier-Lambrouin, P. Qu, C. Pasquier, S. Pézennec, R. Schweins, and B. Cabane
Soft Matter - 11 389 - - 2015
Optical protein detection based on magnetic clusters rotation
Laboratoire Colloïdes et Matériaux Divisés - Ramiandrisoa, D., Brient-Litzler, E., Daynes, A., Compain, E., Bibette, J., & Baudry
J. New biotechnology - - - 2015
High purity sorting and analysis of circulating tumor cells : towards routine mutation detection
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Autebert J, Coudert B, Champ J, Saias L, Guneri ET, Lebofsky R, Bidard FC, Pierga JY, Farace F, Descroix S, Malaquin L, Viovy JL.
Lab. Chip - 15(9) 2090-101 - - 2015
Magnetoimmunocapture with on bead fluorescent labelling of amyloi b-ppetides : towards a microfluidic fluidized-bed based operation
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Mai TD, Pereiro I, Hiraoui M, Viovy JL, Descroix S, Taverna M, Smadja C.
Analyst - 10;140(17) 5891-900 - - 2015
Electrochemically assisted microlocalized grafting of aptamer in a micro channel engraved in fluorinated thermoplastic polymer Dyneon THV
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Perreard C, Ladner Y, d’Orlye F, Descroix S, Taniga V, Varenne A, Kanoufi F, Slim C, Griveau S, Bedioui F
RSC Adv. - 5(15) - - 2015


- Pour toute publication de résultats ayant reçu l’aide de l’IPGG (présence dans les locaux de l’IPGG, passage sur la plateforme technologique de l’IPGG, collaboration inter équipes IPGG, lié à une bourse doctorale ou postdoctorale IPGG, ou encore utilisation des espaces communs), il vous faut indiquer  cette phrase « Ce travail a été réalisé avec le soutien du laboratoire d’excellence Institut Pierre-Gilles de Gennes (programme Investissements d’avenir ANR-10-IDEX-0001-02 PSL et ANR-10-LABX-31). » / « This work has received the support of "Institut Pierre-Gilles de Gennes" (laboratoire d’excellence, “Investissements d’avenir” program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.). ».

- Pour toute publication de résultats obtenus via l'utilisation d’un équipement acheté par l’Equipex IPGG, il vous faut ajouter la codification suivante : « ANR-10-EQPX-34 ».

579 publications.