Université PSL



Laboratoire :
Auteur :
Revue :
Année :
Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Maiuri P, Rupprecht J-F, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg C-P, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon-Dumenil A-M, Raab M, Thiam H-R, Piel M, Sixt M, Voituriez R
Cell - 161(2) 374-86 - DOI: 10.1016/j.cell.2015.01.056 - 2019
Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.
Deterministic patterns in cell motility
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Ido Lavi, Matthieu Piel, Ana-Maria Lennon-Duménil , Raphaël Voituriez and Nir S. Gov
Nature Physics - 12 1146–1152 - DOI: : 10.1038/NPHYS3836 - 2019
Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.
The physics of cell-size regulation across timescales
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Clotilde Cadart, Larisa Venkova , Pierre Recho , Marco Cosentino Lagomarsino and Matthieu Piel
Nature Physics - 15 993–1004 - doi.org/10.1038/s41567-019-0629-y - 2019
The size of a cell is determined by a combination of synthesis, self-assembly, incoming matter and the balance of mechanical
forces. Such processes operate at the single-cell level, but they are deeply interconnected with cell-cycle progression, resulting
in a stable average cell size at the population level. Here, we examine this phenomenon by reviewing the physics of growth
processes that operate at vastly different timescales, but result in the controlled production of daughter cells that are close
copies of their mothers. We first review the regulatory mechanisms of size at short timescales, focusing on the contribution of
fundamental physical forces. We then discuss the multiple relevant regulation processes operating on the timescale of the cell
cycle. Finally, we look at how these processes interact: one of the most important challenges to date involves bridging the gap
between timescales, connecting the physics of cell growth and the biology of cell-cycle progression.
A Tug-of-War between Cell Shape and Polarity Controls Division Orientation to Ensure Robust Patterning in the Mouse Blastocyst
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Niwayama R , Moghe P, Liu YJ, Fabrèges D, Buchholz F, Piel M, Hiiragi T
Dev Cell - 51(5) 564-574.e6 - DOI: 10.1016/j.devcel.2019.10.012 5 - 2019
Oriented cell division patterns tissues by modulating cell position and fate. While cell geometry, junctions, cortical tension, and polarity are known to control division orientation, relatively little is known about how these are coordinated to ensure robust patterning. Here, we systematically characterize cell division, volume, and shape changes during mouse pre-implantation development by in toto live imaging. The analysis leads us to a model in which the apical domain competes with cell shape to determine division orientation. Two key predictions of the model are verified experimentally: when outside cells of the 16-cell embryo are released from cell shape asymmetry, the axis of division is guided by the apical domain. Conversely, orientation cues from the apical domain can be overcome by applied shape asymmetry in the 8-cell embryo. We propose that such interplay between cell shape and polarity in controlling division orientation ensures robust patterning of the blastocyst and possibly other tissues.
Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Hélène D Moreau, Carles Blanch-Mercader, Rafaele Attia, Mathieu Maurin, Zahraa Alraies, Doriane Sanséau, Odile Malbec, Maria-Graciela Delgado, Philippe Bousso, Jean-François Joanny, Raphaël Voituriez, Matthieu Piel, Ana-Maria Lennon-Duménil
Dev Cell - 49(2) 171-188.e5 - DOI: 10.1016/j.devcel.2019.03.024 - 2019
The migration of immune cells can be guided by physical cues imposed by the environment, such as geometry, rigidity, or hydraulic resistance (HR). Neutrophils preferentially follow paths of least HR in vitro, a phenomenon known as barotaxis. The mechanisms and physiological relevance of barotaxis remain unclear. We show that barotaxis results from the amplification of a small force imbalance by the actomyosin cytoskeleton, resulting in biased directional choices. In immature dendritic cells (DCs), actomyosin is recruited to the cell front to build macropinosomes. These cells are therefore insensitive to HR, as macropinocytosis allows fluid transport across these cells. This may enhance their space exploration capacity in vivo. Conversely, mature DCs down-regulate macropinocytosis and are thus barotactic. Modeling suggests that HR may help guide these cells to lymph nodes where they initiate immune responses. Hence, DCs can either overcome or capitalize on the physical obstacles they encounter, helping their immune-surveillance function
STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes
Laboratoire Biologie cellulaire systémique de la polarité et de la division - A PJ Martin M Jacquemyn J Lipecka C Chhuon V N Aushev B Meunier M K Singh N Carpi M Piel P Codogno A Hergovich M C Parrini G Zalcman I C Guerrera D Daelemans J H Camonis
EMBO Rep - 20 e48150 - doi.org/10.15252/embr.201948150 - 2019
STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context‐dependent proximity‐labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation‐induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin‐1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1‐dependent cargo export regulation by phosphorylation of XPO1's C‐terminal auto‐inhibitory domain.
The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Gentili M, Lahaye X, Nadalin F1, Nader GPF, Puig Lombardi E, Herve S, De Silva NS, Rookhuizen DC, Zueva E, Goudot C, Maurin M, Bochnakian A, Amigorena S, Piel M, Fachinetti D, Londoño-Vallejo A,
Cell Reports - 26(9) 2377-2393.e13 - DOI: 10.1016/j.celrep.2019.01.105 - 2019
Cytosolic DNA activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS), an innate immune sensor pivotal in anti-microbial defense, senescence, auto-immunity, and cancer. cGAS is considered to be a sequence-independent DNA sensor with limited access to nuclear DNA because of compartmentalization. However, the nuclear envelope is a dynamic barrier, and cGAS is present in the nucleus. Here, we identify determinants of nuclear cGAS localization and activation. We show that nuclear-localized cGAS synthesizes cGAMP and induces innate immune activation of dendritic cells, although cGAMP levels are 200-fold lower than following transfection with exogenous DNA. Using cGAS ChIP-seq and a GFP-cGAS knockin mouse, we find nuclear cGAS enrichment on centromeric satellite DNA, confirmed by imaging, and to a lesser extent on LINE elements. The non-enzymatic N-terminal domain of cGAS determines nucleo-cytoplasmic localization, enrichment on centromeres, and activation of nuclear-localized cGAS. These results reveal a preferential functional association of nuclear cGAS with centromeres.
Profilin and formin constitute a pacemaker system for robust actin filament growth
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Johanna Funk, Felipe Merino, Larisa Venkova, Lina Heydenreich, Jan Kierfeld, Pablo Vargas, Stefan Raunser, Matthieu Piel, Peter Bieling Is a corresponding author
Dev Cell - 8 e50963 - DOI: 10.7554/eLife.50963 - 2019
The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration..
Myosin II Activity Is Selectively Needed for Migration in Highly Confined Microenvironments in Mature Dendritic Cells.
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Lucie Barbier, Pablo J Sáez, Rafaele Attia, Ana-Maria Lennon-Duménil, Ido Lavi, Matthieu Piel, Pablo Vargas
Frontiers in immunology - 11 747 - DOI : 10.3389/fimmu.2019.00747 - 2019
Upon infection, mature dendritic cells (mDCs) migrate from peripheral tissue to lymph nodes (LNs) to activate T lymphocytes and initiate the adaptive immune response. This fast and tightly regulated process is tuned by different microenvironmental factors, such as the physical properties of the tissue. Mechanistically, mDCs migration mostly relies on acto-myosin flow and contractility that depend on non-muscular Myosin IIA (MyoII) activity. However, the specific contribution of this molecular motor for mDCs navigation in complex microenvironments has yet to be fully established. Here, we identified a specific role of MyoII activity in the regulation of mDCs migration in highly confined microenvironments. Using microfluidic systems, we observed that during mDCs chemotaxis in 3D collagen gels under defined CCL21 gradients, MyoII activity was required to sustain their fast speed but not to orientate them toward the chemokine. Indeed, despite the fact that mDCs speed declined, these cells still migrated through the 3D gels, indicating that this molecular motor has a discrete function during their motility in this irregular microenvironment. Consistently, using microchannels of different sizes, we found that MyoII activity was essential to maintain fast cell speed specifically under strong confinement. Analysis of cell motility through micrometric holes further demonstrated that cell contractility facilitated mDCs passage only over very small gaps. Altogether, this work highlights that high contractility acts as an adaptation mechanism exhibited by mDCs to optimize their motility in restricted landscapes. Hence, MyoII activity ultimately facilitates their navigation in highly confined areas of structurally irregular tissues, contributing to the fine-tuning of their homing to LNs to initiate adaptive immune responses.
Reconstruction of destruction – in vitro reconstitution methods in autophagy research
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Satish Babu Moparthi, Thomas Wollert
Journal of Cell Science - 132 jcs223792 - doi: 10.1242/jcs.223792 - 2019
Autophagy is one of the most elaborative membrane remodeling systems in eukaryotic cells. Its major function is to recycle cytoplasmic material by delivering it to lysosomes for degradation. To achieve this, a membrane cisterna is formed that gradually captures cargo such as organelles or protein aggregates. The diversity of cargo requires autophagy to be highly versatile to adapt the shape of the phagophore to its substrate. Upon closure of the phagophore, a double-membrane-surrounded autophagosome is formed that eventually fuses with lysosomes. In response to environmental cues such as cytotoxicity or starvation, bulk cytoplasm can be captured and delivered to lysosomes. Autophagy thus supports cellular survival under adverse conditions. During the past decades, groundbreaking genetic and cell biological studies have identified the core machinery involved in the process. In this Review, we are focusing on in vitro reconstitution approaches to decipher the details and spatiotemporal control of autophagy, and how such studies contributed to our current understanding of the pathways in yeast and mammals. We highlight studies that revealed the function of the autophagy machinery at a molecular level with respect to its capacity to remodel membranes.
Effect of oblique polymer pillars on spreading and elongation of rat mesenchymal stem cells
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Hu J, Liu YJ, Shi J, Wang L, Piel M, Chen Y
Colloids and surfaces. B, Biointerfaces - 183 110485 - DOI: 10.1016/j.colsurfb.2019.110485 - 2019
Stiffness and anisotropy of culture substrates are important factors influencing the cell behavior and their responses to external stimuli. Herein, we report a fabrication method of oblique polymer pillars which allow modulating both stiffness and anisotropy of the substrate for spreading and elongation studies of Rat Mesenchymal Stem Cells (RMSCs). Poly (Lactic-co-Glycolic Acid) (PLGA) has been chosen to produce micro-pillars of different heights and different pitches using a combined method of soft-lithography and hot embossing. The stiffness of such pillar substrates varies over a large range so that RMSCs show effectively different spreading behaviors which are also sensitive to the inclining angle of the pillars. Our results showed that with the increase of the pillar height the area of cell spreading decreases but the cell elongation aspect ratio increases. Moreover, cells preferentially elongate along the direction perpendicular to that of the pillars' inclining, which is in agreement with the calculated anisotropy of the pillar substrate stiffness.
Emulsification with rectangular tubes
Laboratoire Colloïdes et Matériaux Divisés - Erwan Crestel, Ladislav Derzsi, Hugo Bartolomei, Jérôme Bibette, and Nicolas Bremond*
Phys. Rev. Fluids - 4 073602 - DOI: 10.1103/PhysRevFluids.4.073602 - 2019
The flow of two immiscible liquids or fluids in bounded systems where confinement
geometry varies can lead to drop or bubble formation. This phenomenon has been reported
in the context of oil recovery and named snap-off, or exploited for making emulsions,
and then foams, by using microfluidic systems, namely, microchannel emulsification or
step emulsification. We report a comprehensive experimental investigation of such an
emulsification process occurring at the end of a glass rectangular tube filled with oil and
immersed in a water bath. This allows us to clearly visualize the breakup event of the
dispersed phase liquid finger at the capillary’s end. Below a critical flow rate, the drop size
varies slowly with the flow rate and it is linked to the pinching time of the dispersed phase.
A semiempirical law that gives the resulting drop size as a function of fluid and geometrical
properties is proposed. However, this feature is altered for an aspect ratio of the rectangular
tube below 2.5 where the forming drop hinders the counterflow of the continuous phase
leading to larger drops. Then, above a critical flow rate, or capillary number that weakly
depends on the viscosity ratio of the two liquids, the neck adopts a quasistatic shape well
accounted for by a model based on a Hele-Shaw flow. In that case, drop formation is
driven by gravity and a transition from a dripping regime to a jetting regime is observed
at higher flow rates. Monodisperse foam can also be formed by injecting air. While the
overall dynamics of bubble formation shares similarities with an incompressible fluid, the
bubble size and the critical capillary number do not follow the same scaling laws.
Convective dispersion of particles in a segmented flow
Laboratoire Colloïdes et Matériaux Divisés - Wafa Bouhlel,1,2 S. Danial Naghib,1 Jérôme Bibette,1 and Nicolas Bremond 1
Phys. Rev. Fluids - - DOI: 10.1103/PhysRevFluids.4.104303 - 2019
Convective dispersion of solutes is inherent to flow in channels because of the nonuniformity of the velocity profile. When diffusion is negligible, for large particles for example,
the trajectory of particles can be solely described by a kinematic approach. Here, we
investigate such a phenomenon for micrometer-size beads flowing in a circular pipe. We
show that the presence of large bubbles, namely in the case of a segmented flow, either
prevents the convective dispersion or leads to the accumulation of particles at the rear of
the bubble moving in front. The destabilization of the initially homogeneous suspension
occurs when liquid inertia comes into play. Indeed, for moderate Reynolds number of
the particles, particles move away from the wall, thus exploring different flow lines that
finally impact the axial dispersion features. Moreover, since the bubbles impose an axial
boundary condition of the mean velocity, a net flux of particles directed along the flow
direction is built up above a critical particle Reynolds number. This work is motivated by
the understanding of the flow behavior of biological samples, and especially in the context
of cell encapsulation.
A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix
Laboratoire Colloïdes et Matériaux Divisés - Aizel K, Clark AG, Simon A, Geraldo S, Funfak A, Vargas P, Bibette J, Vignjevic DM, Bremond N.
Lab. Chip - 7;17(22): 3851-3861 - DOI: 10.1039/c7lc00649g - 2019
In many cell types, migration can be oriented towards a chemical stimulus. In mammals, for example, embryonic cells migrate to follow developmental cues, immune cells migrate toward sites of inflammation, and cancer cells migrate away from the primary tumour and toward blood vessels during metastasis. Understanding how cells migrate in 3D environments in response to chemical cues is thus crucial to understanding directed migration in normal and disease states. To date, chemotaxis in mammalian cells has been primarily studied using 2D migration models. However, it is becoming increasingly clear that the mechanisms by which cells migrate in 2D and 3D environments dramatically differ, and cells in their native environments are confronted with a complex chemical milieu. To address these issues, we developed a microfluidic device to monitor the behaviour of cells embedded in a 3D collagen matrix in the presence of complex concentration fields of chemoattractants. This tuneable microsystem enables the generation of (1) homogeneous, stationary gradients set by a purely diffusive mechanism, or (2) spatially evolving, stationary gradients, set by a convection-diffusion mechanism. The device allows for stable gradients over several days and is large enough to study the behaviour of large cell aggregates. We observe that primary mature dendritic cells respond uniformly to homogeneous diffusion gradients, while cell behaviour is highly position-dependent in spatially variable convection-diffusion gradients. In addition, we demonstrate a directed response of cancer cells migrating away from tumour-like aggregates in the presence of soluble chemokine gradients. Together, this microfluidic device is a powerful system to observe the response of different cells and aggregates to tuneable chemical gradients.
A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Iago Pereiro, Amel Bendali, Sanae Tabnaoui, Lucile Alexandre, Jana Srbova, Zuzana Bilkova, Shane Deegan, Lokesh Joshi, Jean-Louis Viovy, Laurent Malaquin, Bruno Dupuy and Stéphanie Descroix
Chem. Sci. - 8(2) 1329-1336 - DOI: 10.1039/C6SC03880H - 2019
A microfluidic method to specifically capture and detect infectious bacteria based on immunorecognition and proliferative power is presented. It involves a microscale fluidized bed in which magnetic and drag forces are balanced to retain antibody-functionalized superparamagnetic beads in a chamber during sample perfusion. Captured cells are then cultivated in situ by infusing nutritionally-rich medium. The system was validated by the direct one-step detection of Salmonella Typhimurium in undiluted unskimmed milk, without pre-treatment. The growth of bacteria induces an expansion of the fluidized bed, mainly due to the volume occupied by the newly formed bacteria. This expansion can be observed with the naked eye, providing simple low-cost detection of only a few bacteria and in a few hours. The time to expansion can also be measured with a low-cost camera, allowing quantitative detection down to 4 cfu (colony forming unit), with a dynamic range of 100 to 107 cfu ml−1 in 2 to 8 hours, depending on the initial concentration. This mode of operation is an equivalent of quantitative PCR, with which it shares a high dynamic range and outstanding sensitivity and specificity, operating at the live cell rather than DNA level. Specificity was demonstrated by controls performed in the presence of a 500× excess of non-pathogenic Lactococcus lactis. The system's versatility was demonstrated by its successful application to the detection and quantitation of Escherichia coli O157:H15 and Enterobacter cloacae. This new technology allows fast, low-cost, portable and automated bacteria detection for various applications in food, environment, security and clinics.
Magnetic fluidized bed for solid phase extraction in microfluidic systems
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Pereiro, Iago ; Tabnaoui, Sanae ; Fermigier, Marc ; du Roure, Olivia ; Descroix, Stephanie ; Viovy, Jean-Louis ; Malaquin, Laurent
Lab. Chip - 17, 9 1603-1615 - DOI: 10.1039/C7LC00063D - 2019
Fluidization, a process in which a granular solid phase behaves like a fluid under the influence of an imposed upward fluid flow, is routinely used in many chemical and biological engineering applications. It brings, to applications involving fluid–solid exchanges, advantages such as high surface to volume ratio, constant mixing, low flow resistance, continuous operation and high heat transfer. We present here the physics of a new miniaturized, microfluidic fluidized bed, in which gravity is replaced by a magnetic field created by an external permanent magnet, and the solid phase is composed of magnetic microbeads with diameters ranging from 1 to 5 μm. These beads can be functionalized with different ligands, catalysts or enzymes, in order to use the fluidized bed as a continuous purification column or bioreactor. It allows flow-through operations at flow rates ranging from 100 nL min−1 up to 5 μL min−1 at low driving pressures (<100 mbar) with intimate liquid/solid contact and a continuous recirculation of beads for enhanced target capture efficiencies. The physics of the system presents significant differences as compared to conventional fluidized beds, which are studied here. The effects of magnetic field profile, flow chamber shape and magnetic bead dipolar interactions on flow regimes are investigated, and the different regimes of operation are described. Qualitative rules to obtain optimal operation are deduced. Finally, an exemplary use as a platform for immunocapture is provided, presenting a limit of detection of 0.2 ng mL−1 for 200 μL volume samples.
Microfluidic extraction and digital quantification of circulating cell-free DNA from serum
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Karla Perez-Toralla, Iago Pereiro, Sonia Garrigou, Fahima Di Federico, Charlotte Proudhon, François-Clément Bidard, Jean-Louis Viovy, Valérie Taly, Stephanie Descroix
ELSEVIER - 286 533-539 - - 2019
Miniaturized devices for the extraction of DNA have been used for assessing genetic material in biological, forensic and environmental samples. However, the ability to isolate trace amounts of highly fragmented DNA from biological fluids remains a challenge. The current work reports a microfluidic approach that combines on line a dynamic magnetic extraction procedure with droplet-based digital PCR (ddPCR). This strategy maximizes the surface area for DNA binding within the chip, in order to capture short DNA fragments, with the possibility of
recovering the purified samples into picoliter volumes for high sensitivity mutation detection. The application of this technology to capture circulating cell-free DNA (ccfDNA) from serum samples of cancer patients is demonstrated herein, with efficiencies comparable to standard column-based DNA extraction methods. This technology uses lesser amounts of required material and reagents, and has a higher potential for automation and multiplex DNA analysis. Furthermore, this approach can also be extended for the detection of other circulating biomarkers, such as nucleic acid sequences with aberrant methylation patterns or miRNA.
In-capillary immuno-preconcentration with circulating bio-functionalized magnetic beads for capillary electrophoresis
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Thanh Duc Mai Peter Hauser Stéphanie Descroix Cédric Crosnier de Lassichère Myriam Taverna Claire Smadja
HAL - 02343981 1 - - 2019
This study reports on the conception of magneto-Capillary Electrophoresis (magneto-CE), an approach integrating immuno-capture on circulating bio-functionalized magnetic beads into a unique capillary for preconcentration and electrokinetic separation. This hybrid mode is an evolution of in-capillary magnetic bead-based operation from static cluster format to dynamic configuration where beads are allowed to controllably circulate inside a CE capillary for interaction improvement. To implement the magneto-CE operation, a purpose-made instrument was constructed, allowing visual observation of the movement of the magnetic beads. We applied a new methodological strategy for determination of the amyloid β peptide (Aβ 1–42), which is as an established biomarker for molecular diagnosis of Alzheimer's disease (AD). The methodology is based on magneto-immuno-capture of fluorescently labeled Aβ 1–42 followed by a chemical elution with a basic solution prior to CE separation with laser induced fluorescent (LIF) detection. The superiority of this dynamic configuration of magneto-CE was demonstrated for this target analyte, with sample pretreatment and separation being performed in-capillary without any delay in between and without any waste of pretreated sample, which otherwise would not be the case with offline/batch-wise operation.
Topographical cues control the morphology and dynamics of migrating cortical interneurons
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Claire Leclech, Marianne Renner, Catherine Villard, Christine Métin
Biomaterials - 214 119194 - doi: 10.1016/j.biomaterials.2019.05.005 - 2019
In mammalian embryos, cortical interneurons travel long distances among complex three-dimensional tissues before integrating into cortical circuits. Several molecular guiding cues involved in this migration process have been identified, but the influence of physical parameters remains poorly understood. In the present study, we have investigated in vitro the influence of the topography of the microenvironment on the migration of primary cortical interneurons released from mouse embryonic explants. We found that arrays of PDMS micro-pillars of 10 μm size and spacing, either round or square, influenced both the morphology and the migratory behavior of interneurons. Strikingly, most interneurons exhibited a single and long leading process oriented along the diagonals of the square pillared array, whereas leading processes of interneurons migrating in-between round pillars were shorter, often branched and oriented in all available directions. Accordingly, dynamic studies revealed that growth cone divisions were twice more frequent in round than in square pillars. Both soma and leading process tips presented forward directed movements within square pillars, contrasting with the erratic trajectories and more dynamic movements observed among round pillars. In support of these observations, long interneurons migrating in square pillars displayed tight bundles of stable microtubules aligned in the direction of migration. Overall, our results show that micron-sized topography provides global spatial constraints promoting the establishment of different morphological and migratory states. Remarkably, these different states belong to the natural range of migratory behaviors of cortical interneurons, highlighting the potential importance of topographical cues in the guidance of these embryonic neurons, and more generally in brain development.
VEGF (Vascular Endothelial Growth Factor) Functionalized Magnetic Beads in a Microfluidic Device to Improve the Angiogenic Balance in Preeclampsia
Laboratoire Macromolécules et Microsystèmes en Biologie et Médecine - Laura Trapiella-Alfonso, Lucile Alexandre, Camille Fraichard , Kelly Pons, Simon Dumas, Lucie Huart, Jean-François Gaucher, Marylise Hebert-Schuster, Jean Guibourdenche , Thierry Fournier, Michel Vidal, Isabelle Broutin, Lau
Hypertension - 74(1) 145-153 - DOI: 10.1161/HYPERTENSIONAHA.118.12380 - 2019
Preeclampsia is a hypertensive pregnancy disease associated with a massive increase in sFlt-1 (soluble form of the vascular endothelial growth factor 1) in the maternal circulation, responsible for angiogenic imbalance and endothelial dysfunction. Pilot studies suggest that extracorporeal apheresis may reduce circulating sFlt-1 and prolong pregnancy. Nonspecific apheresis systems have potential adverse effects because of the capture of many other molecules. Our concept is based on a specific and competitive apheresis approach using VEGF (vascular endothelial growth factor) functionalized magnetic beads to capture sFlt-1 while releasing endogenous PlGF (placental growth factor) to restore a physiological angiogenic balance. Magnetic beads were functionalized with VEGF to capture sFlt-1. Experiments were performed using PBS, conditioned media from human trophoblastic cells, and human plasma. The proof of concept was validated in dynamic conditions in a microfluidic device as an approach mimicking real apheresis. Magnetic beads were functionalized with VEGF and characterized to evaluate their surface ligand density and recognition capabilities. VEGF-coated magnetic beads proved to be an efficient support in capturing sFlt-1 and releasing PlGF. In static conditions, sFlt-1 concentration decreased by 33±13%, whereas PlGF concentration increased by 27±10%. In dynamic conditions, the performances were improved, with 40% reduction of sFlt-1 and up to 2-fold increase of free PlGF. The sFlt-1/PlGF ratio was reduced by 63% in the plasma of preeclamptic patients. Apheresis was also associated with VEGF release. A ligand-based approach using VEGF-coated beads is an effective approach to the capture of sFlt-1 and the release of endogenous PlGF. It offers new perspectives for the treatment of preeclampsia.

515 publications.