Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :
Active cargo positioning in antiparallel transport networks.
Mathieu Richard, Carles Blanch-Mercader, Hajer Ennomani, Wenxiang Cao, Enrique M De La Cruz, Jean-François Joanny, Frank Jülicher, Laurent Blanchoin, Pascal Martin
Green Processing and Synthesis - - DOI : 10.1073/pnas.1900416116 - 2019
Cytoskeletal filaments assemble into dense parallel, antiparallel, or disordered networks, providing a complex environment for active cargo transport and positioning by molecular motors. The interplay between the network architecture and intrinsic motor properties clearly affects transport properties but remains poorly understood. Here, by using surface micropatterns of actin polymerization, we investigate stochastic transport properties of colloidal beads in antiparallel networks of overlapping actin filaments. We found that 200-nm beads coated with myosin Va motors displayed directed movements toward positions where the net polarity of the actin network vanished, accumulating there. The bead distribution was dictated by the spatial profiles of local bead velocity and diffusion coefficient, indicating that a diffusion-drift process was at work. Remarkably, beads coated with heavy-mero-myosin II motors showed a similar behavior. However, although velocity gradients were steeper with myosin II, the much larger bead diffusion observed with this motor resulted in less precise positioning. Our observations are well described by a 3-state model, in which active beads locally sense the net polarity of the network by frequently detaching from and reattaching to the filaments. A stochastic sequence of processive runs and diffusive searches results in a biased random walk. The precision of bead positioning is set by the gradient of net actin polarity in the network and by the run length of the cargo in an attached state. Our results unveiled physical rules for cargo transport and positioning in networks of mixed polarity.
Stiffness and tension gradients of the hair cell’s tip-link complex in the mammalian cochlea
Mélanie Tobin, Atitheb Chaiyasitdhi, Vincent Michel, Nicolas Michalski, Pascal Martin
Nature Communications - - doi: 10.7554/eLife.43473 - 2019
Frequency analysis of sound by the cochlea relies on sharp frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell’s mechanoreceptive hair bundle in the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca2+. Finally, we reveal tonotopic gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.

SIGNIFICANCE STATEMENT The tip-link complex of the hair cell is mechanically tuned along the tonotopic axis of the cochlea.

An intrinsically disordered region in OSBP acts as an entropic barrier to control protein dynamics and orientation at membrane contact sites
Jamecna D, Polidori DJ, Mesmin B, Dezi M, Lévy D, Bigay J, Antonny B
Dev Cell - - DOI : 10.1016/j.devcel.2019.02.021 - 2019
Lipid transfer proteins (LTPs) acting at membrane contact sites (MCS) between the ER and other organelles contain domains involved in heterotypic (e.g. ER to Golgi) membrane tethering as well as domains involved in lipid transfer. Here, we show that a long ≈ 90 aa intrinsically unfolded sequence at the N-terminus of oxysterol binding protein (OSBP) controls OSBP orientation and dynamics at MCS. This Gly-Pro-Ala-rich sequence, whose hydrodynamic radius is twice as that of folded domains, prevents the two PH domains of the OSBP dimer from homotypically tethering two Golgi-like membranes and considerably facilitates OSBP in-plane diffusion and recycling at MCS. Although quite distant in sequence, the N-terminus of OSBP-related protein-4 (ORP4) has similar effects. We propose that N-terminal sequences of low complexity in ORPs form an entropic barrier that restrains protein orientation, limits protein density and facilitates protein mobility in the narrow and crowded MCS environment.

Actin dynamics drive cell-like membrane deformation
Simon C*, Kusters R*, Caorsi V*, Allard A, Abou-Ghali M, Manzi J, Di Cicco A, Lévy D, Lenz M, Joanny J-F, Campillo C, Plastino J, Sens P, Sykes C
Nature Physics - 15 602–609 - DOI : 10.1038/s41567-019-0464-1 - 2019
Cell membrane deformations are crucial for proper cell function. Specialized protein assemblies initiate inward or outward membrane deformations that the cell uses respectively to uptake external substances or probe the environment. The assembly and dynamics of the actin cytoskeleton are involved in this process, although their detailed role remains controversial. We show here that a dynamic, branched actin network is sufficient to initiate both inward and outward membrane deformation. The polymerization of a dense actin network at the membrane of liposomes produces inward membrane bending at low tension, while outward deformations are robustly generated regardless of tension. Our results shed light on the mechanism cells use to internalize material, both in mammalian cells, where actin polymerization forces are required when membrane tension is increased, and in yeast, where those forces are necessary to overcome the opposing turgor pressure. By combining experimental observations with physical modelling, we propose a mechanism that explains how membrane tension and the architecture of the actin network regulate cell-like membrane deformations.
HLH-2/E2A Expression Links Stochastic and Deterministic Elements of a Cell Fate Decision during C. elegans Gonadogenesis
Attner MA, Keil W, Benavidez JM, Greenwald I.
Curr Biol. - - DOI: 10.1016/j.cub.2019.07.062 - 2019
Stochastic mechanisms diversify cell fate in organisms ranging from bacteria to humans [1-4]. In the anchor cell/ventral uterine precursor cell (AC/VU) fate decision during C. elegans gonadogenesis, two "α cells," each with equal potential to be an AC or a VU, interact via LIN-12/Notch and its ligand LAG-2/DSL [5, 6]. This LIN-12/Notch-mediated interaction engages feedback mechanisms that amplify a stochastic initial difference between the two α cells, ensuring that the cell with higher lin-12 activity becomes the VU while the other becomes the AC [7-9]. The initial difference between the α cells was originally envisaged as a random imbalance from "noise" in lin-12 expression/activity [6]. However, subsequent evidence that the relative birth order of the α cells biases their fates suggested other factors may be operating [7]. Here, we investigate the nature of the initial difference using high-throughput lineage analysis [10]; GFP-tagged endogenous LIN-12, LAG-2, and HLH-2, a conserved transcription factor that orchestrates AC/VU development [7, 11]; and tissue-specific hlh-2 null alleles. We identify two stochastic elements: relative birth order, which largely originates at the beginning of the somatic gonad lineage three generations earlier, and onset of HLH-2 expression, such that the α cell whose parent expressed HLH-2 first is biased toward the VU fate. We find that these elements are interrelated, because initiation of HLH-2 expression is linked to the birth of the parent cell. Finally, we provide a potential deterministic mechanism for the HLH-2 expression bias by showing that hlh-2 is required for LIN-12 expression in the α cells.
Parallelized DNA tethered bead measurements to scrutinize DNA mechanical structure
Allemand JF, Tardin C, Salomé L.
Nat. Methods - 1;169 46-56 - doi: 10.1016/j.ymeth.2019.07.020. - 2019
Tethering beads to DNA offers a panel of single molecule techniques for the refined analysis of the conformational dynamics of DNA and the elucidation of the mechanisms of enzyme activity. Recent developments include the massive parallelization of these techniques achieved by the fabrication of dedicated nanoarrays by soft nanolithography. We focus here on two of these techniques: the Tethered Particle motion and Magnetic Tweezers allowing analysis of the behavior of individual DNA molecules in the absence of force and under the application of a force and/or a torque, respectively. We introduce the experimental protocols for the parallelization and discuss the benefits already gained, and to come, for these single molecule investigations.
Anisotropic cellular forces support mechanical integrity of the Stratum Corneum barrier
Guo S, Domanov Y, Donovan M, Ducos B, Pomeau Y, Gourier C, Perez E, Luengo GS.
Chem. Mater - 92 11-23 - doi: 10.1016/j.jmbbm.2018.12.027 - 2019
The protective function of biological surfaces that are exposed to the exterior of living organisms is the result of a complex arrangement and interaction of cellular components. This is the case for the most external cornified layer of skin, the stratum corneum (SC). This layer is made of corneocytes, the elementary 'flat bricks' that are held together through adhesive junctions. Despite the well-known protective role of the SC under high mechanical stresses and rapid cell turnover, the subtleties regarding the adhesion and mechanical interaction among the individual corneocytes are still poorly known. Here, we explore the adhesion of single corneocytes at different depths of the SC, by pulling them using glass microcantilevers, and measuring their detachment forces. We measured their interplanar adhesion between SC layers, and their peripheral adhesion among cells within a SC layer. Both adhesions increased considerably with depth. At the SC surface, with respect to adhesion, the corneocyte population exhibited a strong heterogeneity, where detachment forces differed by more than one order of magnitude for corneocytes located side by side. The measured detachment forces indicated that in the upper-middle layers of SC, the peripheral adhesion was stronger than the interplanar one. We conclude that the stronger peripheral adhesion of corneocytes in the SC favors an efficient barrier which would be able to resist strong stresses.
Anisotropic cellular forces support mechanical integrity of the Stratum Corneum barrier
Guo S, Domanov Y, Donovan M, Ducos B, Pomeau Y, Gourier C, Perez E, Luengo GS.
Chem. Mater - 92 11-23 - doi: 10.1016/j.jmbbm.2018.12.027 - 2019
The protective function of biological surfaces that are exposed to the exterior of living organisms is the result of a complex arrangement and interaction of cellular components. This is the case for the most external cornified layer of skin, the stratum corneum (SC). This layer is made of corneocytes, the elementary 'flat bricks' that are held together through adhesive junctions. Despite the well-known protective role of the SC under high mechanical stresses and rapid cell turnover, the subtleties regarding the adhesion and mechanical interaction among the individual corneocytes are still poorly known. Here, we explore the adhesion of single corneocytes at different depths of the SC, by pulling them using glass microcantilevers, and measuring their detachment forces. We measured their interplanar adhesion between SC layers, and their peripheral adhesion among cells within a SC layer. Both adhesions increased considerably with depth. At the SC surface, with respect to adhesion, the corneocyte population exhibited a strong heterogeneity, where detachment forces differed by more than one order of magnitude for corneocytes located side by side. The measured detachment forces indicated that in the upper-middle layers of SC, the peripheral adhesion was stronger than the interplanar one. We conclude that the stronger peripheral adhesion of corneocytes in the SC favors an efficient barrier which would be able to resist strong stresses.
PICH and TOP3A cooperate to induce positive DNA supercoiling
Anna Hélène Bizard, Jean-Francois Allemand, Tue Hassenkam, Manikandan Paramasivam
Nature - 26(4) 1 - DOI: 10.1038/s41594-019-0201-6 - 2019
All known eukaryotic topoisomerases are only able to relieve torsional stress in DNA. Nevertheless, it has been proposed that the introduction of positive DNA supercoiling is required for efficient sister-chromatid disjunction by Topoisomerase 2a during mitosis. Here we identify a eukaryotic enzymatic activity that introduces torsional stress into DNA. We show that the human Plk1-interacting checkpoint helicase (PICH) and Topoisomerase 3a proteins combine to create an extraordinarily high density of positive DNA supercoiling. This activity, which is analogous to that of a reverse-gyrase, is apparently driven by the ability of PICH to progressively extrude hypernegatively supercoiled DNA loops that are relaxed by Topoisomerase 3a. We propose that this positive supercoiling provides an optimal substrate for the rapid disjunction of sister centromeres by Topoisomerase 2a at the onset of anaphase in eukaryotic cells.
On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets
D. Molino, S. Quignard, C. Gruget, F. Pincet, Y. Chen, M. Piel & J. Fattaccioli
Scientific Reports - 6 29113 - DOI: 10.1038/srep29113 - 2019
The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.

400 publications.