Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :
Mechanistic characterization of the DEAD-box RNA helicase Ded1 from yeast as revealed by a novel technique using single-molecule magnetic tweezers
Laboratoire Physique des biomolécules - Saurabh Raj, Debjani Bagchi, Jessica Valle Orero, Josette Banroques, N Kyle Tanner, Vincent Croquette
Nucleic Acids Res. - 47(7) 3699–3710 - doi.org/10.1093/nar/gkz057 - 2019
DEAD-box helicases are involved in all steps of RNA metabolism. They are ATP-dependent RNA binding proteins and RNA-dependent ATPases. They can displace short duplexes, but they lack processivity. Their mechanism and functioning are not clearly understood; classical or bulk biochemical assays are not sufficient to answer these questions. Single-molecule techniques provide useful tools, but they are limited in cases where the proteins are nonprocessive and give weak signals. We present here a new, magnetic-tweezers-based, single-molecule assay that is simple and that can sensitively measure the displacement time of a small, hybridized, RNA oligonucleotide. Tens of molecules can be analyzed at the same time. Comparing the displacement times with and without a helicase gives insights into the enzymatic activity of the protein. We used this assay to study yeast Ded1, which is orthologous to human DDX3. Although Ded1 acts on a variety of substrates, we find that Ded1 requires an RNA substrate for its ATP-dependent unwinding activity and that ATP hydrolysis is needed to see this activity. Further, we find that only intramolecular single-stranded RNA extensions enhance this activity. We propose a model where ATP-bound Ded1 stabilizes partially unwound duplexes and where multiple binding events may be needed to see displacement.
Longitudinal Analyses of Blood Transcriptome During Conversion to Psychosis
Laboratoire Physique des biomolécules - Saurabh Raj, Debjani Bagchi, Jessica Valle Orero, Josette Banroques, N Kyle Tanner, Vincent Croquette
Schizophr Bull - 45(1) 247-255 - doi: 10.1093/schbul/sby009 - 2019
The biological processes associated with the onset of schizophrenia remain largely unknown. Current hypotheses favor gene × environment interactions as supported by our recent report about DNA methylation changes during the onset of psychosis. Here, we conducted the first longitudinal transcriptomic analysis of blood samples from 31 at-risk individuals who later converted to psychosis and 63 at-risk individuals who did not. Individuals were followed for a maximum of 1 year. Blood samples were collected at baseline and at the end of follow-up and individuals served as their own controls. Differentially expressed genes between the 2 groups were identified using the RNA sequencing of an initial discovery subgroup (n = 15 individuals). The most promising results were replicated using high-throughput real-time qPCR in the whole cohort (n = 94 individuals). We identified longitudinal changes in 4 brain-expressed genes based on RNAseq analysis. One of these genes (CPT1A) was replicated in the whole cohort. The previously observed hypermethylation in NRP1 and GSTM5 during the onset of psychosis correlated with a decrease in corresponding gene expression. RNA sequencing also identified 2 co-expression networks that were impaired after conversion compared with baseline-the Wnt pathway including AKT1, CPT1A and semaphorins, and the Toll-like receptor pathway, related to innate immunity. This longitudinal study of transcriptomic changes in individuals with at-risk mental state revealed alterations during conversion to psychosis in pathways and genes relevant to schizophrenia. These results may be a first step toward better understanding psychosis onset. They may also help to identify new biomarkers and targets for disease-modifying therapeutic strategies
Longitudinal Analyses of Blood Transcriptome During Conversion to Psychosis
Laboratoire Physique des biomolécules - Saurabh Raj, Debjani Bagchi, Jessica Valle Orero, Josette Banroques, N Kyle Tanner, Vincent Croquette
Schizophr Bull - 45(1) 247-255 - doi: 10.1093/schbul/sby009 - 2019
The biological processes associated with the onset of schizophrenia remain largely unknown. Current hypotheses favor gene × environment interactions as supported by our recent report about DNA methylation changes during the onset of psychosis. Here, we conducted the first longitudinal transcriptomic analysis of blood samples from 31 at-risk individuals who later converted to psychosis and 63 at-risk individuals who did not. Individuals were followed for a maximum of 1 year. Blood samples were collected at baseline and at the end of follow-up and individuals served as their own controls. Differentially expressed genes between the 2 groups were identified using the RNA sequencing of an initial discovery subgroup (n = 15 individuals). The most promising results were replicated using high-throughput real-time qPCR in the whole cohort (n = 94 individuals). We identified longitudinal changes in 4 brain-expressed genes based on RNAseq analysis. One of these genes (CPT1A) was replicated in the whole cohort. The previously observed hypermethylation in NRP1 and GSTM5 during the onset of psychosis correlated with a decrease in corresponding gene expression. RNA sequencing also identified 2 co-expression networks that were impaired after conversion compared with baseline-the Wnt pathway including AKT1, CPT1A and semaphorins, and the Toll-like receptor pathway, related to innate immunity. This longitudinal study of transcriptomic changes in individuals with at-risk mental state revealed alterations during conversion to psychosis in pathways and genes relevant to schizophrenia. These results may be a first step toward better understanding psychosis onset. They may also help to identify new biomarkers and targets for disease-modifying therapeutic strategies
Optical control of protein activity and gene expression by photoactivation of caged cyclofen
Laboratoire Physique des biomolécules - Hamouri F, Zhang W, Aujard I, Le Saux T, Ducos B, Vriz S, Jullien L, Bensimon D
Methods Enzymol - 624 44927 - doi: 10.1016/bs.mie.2019.04.009 - 2019
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.
On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets
Laboratoire Pôle Microfluidique - D. Molino, S. Quignard, C. Gruget, F. Pincet, Y. Chen, M. Piel & J. Fattaccioli
Scientific Reports - 6 29113 - DOI: 10.1038/srep29113 - 2019
The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.
Nano-on-Micro Fibrous Extracellular Matrices for Scalable Expansion of Human Es/Ips Cells
Laboratoire Pôle Microfluidique - L. Liu, K.-i. Kamei, M. Yoshioka, M. Nakajima, J. Li, N. Fujimoto, S. Terada, Y. Tokunaga, Y. Koyama, H. Sato, K. Hasegawa, N. Nakatsuji and Y. Chen
Biomaterials - 124 47-54 - DOI: 10.1016/j.biomaterials.2017.01.039 - 2019
Human pluripotent stem cells (hPSCs) hold great potential for industrial and clinical applications. Clinical-grade scaffolds and high-quality hPSCs are required for cell expansion as well as easy handling and manipulation of the products. Current hPSC culture methods do not fulfill these requirements because of a lack of proper extracellular matrices (ECMs) and cell culture wares. We developed a layered nano-on-micro fibrous cellular matrix mimicking ECM, named "fiber-on-fiber (FF)" matrix, which enables easy handling and manipulation of cultured cells. While non-woven sheets of cellulose and polyglycolic acid were used as a microfiber layer facilitating mechanical stability, electrospun gelatin nanofibers were crosslinked on the microfiber layer, generating a mesh structure with connected nanofibers facilitating cell adhesion and growth. Our results showed that the FF matrix supports effective hPSC culture with maintenance of their pluripotency and normal chromosomes over two months, as well as effective scaled-up expansion, with fold increases of 54.1 ± 15.6 and 40.4 ± 8.4 in cell number per week for H1 human embryonic stem cells and 253G1 human induced pluripotent stem cells, respectively. This simple approach to mimick the ECM may have important implications after further optimization to generate lineage-specific products.
Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5.
Laboratoire pour la biologie quantitative du développement - Katz M, Corson F, Keil W,Singhal A, Bae A, Lu Y, Liang Y, Shaham S.
Nat Commun - 10(1) 1882 - doi: 10.1038/s41467-019-09581-4. - 2019
Glutamate is a major excitatory neurotransmitter, and impaired glutamate clearance following synaptic release promotes spillover, inducing extra-synaptic signaling. The effects of glutamate spillover on animal behavior and its neural correlates are poorly understood. We developed a glutamate spillover model in Caenorhabditis elegans by inactivating the conserved glial glutamate transporter GLT-1. GLT-1 loss drives aberrant repetitive locomotory reversal behavior through uncontrolled oscillatory release of glutamate onto AVA, a major interneuron governing reversals. Repetitive glutamate release and reversal behavior require the glutamate receptor MGL-2/mGluR5, expressed in RIM and other interneurons presynaptic to AVA. mgl-2 loss blocks oscillations and repetitive behavior; while RIM activation is sufficient to induce repetitive reversals in glt-1 mutants. Repetitive AVA firing and reversals require EGL-30/Gαq, an mGluR5 effector. Our studies reveal that cyclic autocrine presynaptic activation drives repetitive reversals following glutamate spillover. That mammalian GLT1 and mGluR5 are implicated in pathological motor repetition suggests a common mechanism controlling repetitive behaviors.
Synthesis of benzaldehyde with high selectivity using immobilized AuNPs and AuNPs@zeolite in a catalytic microfluidic system
Laboratoire Procédés - Plasmas - Microsystèmes - Xi Rao, ORCID logo, Ali Abou Hassan, Cédric Guyon, Erick Osvaldo Martinez Ruiz, Michaël Tatoulianb and Stephanie Ognier
Lab. Chip - 17 - DOI: 10.1039/c9lc00386j - 2019
In the present work, gold based catalysts were synthesized and immobilized on the surface of cyclic olefin copolymer (COC) microreactors. The microreactors were subsequently applied in a homemade microfluidic system for synthesizing benzaldehyde by oxidation of benzyl alcohol in water medium. The Au nanoparticles (NPs) immobilized on the inner surface of the microchannel showed a very high selectivity (94%) for benzaldehyde, while zeolite NPs exhibited only an adsorption feature to this reaction. Moreover, the results showed that the AuNP catalytic activity was maintained for at least 9 hours. However, the obtained conversion with AuNPs was only 20%, indicating a relatively low productivity. In comparison, AuNPs assembled on the surface of zeolite NPs (AuNPs@zeolite) and immobilized in the microchannel showed the best catalytic performance, as the highest benzaldehyde selectivity (>99%) with a relatively high benzyl alcohol conversion of 42.4% was achieved under the same conditions. To the best of our knowledge, this is the first example demonstrating the use of AuNP or AuNP@zeolite catalysts in a microsystem performing such high selectivity for benzaldehyde in water medium.

Two-step local functionalization of fluoropolymer Dyneon THV microfluidic materials by scanning electrochemical microscopy combined to click reaction
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - Kadhirvel P, Combès A, Bordron L, Pichon V
Anal. Bioanal. Chem - 411(8) 1525-1536 - doi: 10.1007/s00216-019-01586-8 - 2019
A molecularly imprinted polymer (MIP) was designed in order to allow the selective solid-phase extraction of carbamazepine (CBZ), an anticonvulsant and mood-stabilizing drug, at ultra-trace level from aqueous environmental samples. A structural analog of CBZ was selected as a dummy template and different synthesis conditions were screened. The selectivity of the resulting imprinted polymers was evaluated by studying the retention of CBZ in a solvent similar to the one used for the synthesis. The presence of imprinted cavities in the polymers was then demonstrated by comparing the elution profiles (obtained by using MIP and a non-imprinted polymer, NIP, as a control) of the template, of CBZ, and of a structural analog of CBZ. Then, the extraction procedure was further optimized for the treatment of aqueous samples on the two most promising MIPs, with special attention being paid to the volume and composition of the percolation and washing solutions. The best MIP provided a highly selective retention in tap water with 81% extraction recovery for CBZ in the elution fraction of the MIP and only 14% for NIP. The repeatability of the extraction procedure was demonstrated for both tap and river waters (RSD below 4% in river water) for the drugs CBZ, oxcarbamazepine, and one metabolite (carbamazepine 10,11-epoxide). A MIP capacity of 1.15 μmol g-1 was determined. Finally, an analytical procedure involving the MIP was developed allowing the detection of CBZ at a concentration level of only a few nanograms per liter in river water. The selectivity provided by the MIP resulted in a 3000-fold increase of the signal-to-noise ratio in LC/MS analysis as compared to the use of conventional sorbent. Graphical abstract.
First profiling in hydrophilic interaction liquid chromatography of intact human chorionic gonadotropin isoforms.
Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation - Camperi J, Pichon V, Fournier T, Delaunay N
J Pharm Biomed Anal - 10;174 495-499. - doi: 10.1016/j.jpba.2019.06.014 - 2019
The study of glycoproteins is a rapidly growing field, which is not surprising considering that approximately 70% of human proteins are glycosylated and that numerous biological functions are associated to the glycosylation. In this work, our interest focused on the heterodimeric human Chorionic Gonadotropin (hCG) glycoprotein that is the specific hormone of the human pregnancy, consisting of an α and a β subunit, so-called hCGα and hCGβ, respectively. This protein possesses a very high structural heterogeneity, essentially due to the presence of 8 glycosylation sites, but also other types of post-translational modifications. In this study, for the first time, the potential of hydrophilic interaction liquid chromatography (HILIC) was investigated to separate the intact hCG isoforms. Three different HILIC stationary phases were tested using an hCG-based drug as standard, a recombinant hCG. For each stationary phase, the effect of the initial mobile phase composition based on ACN/H2O mixture, the slope of the gradient, the content and nature of the acidic additive (formic acid and trifluoroacetic acid (TFA)), and the addition of a volatile salt (ammonium formate) on the retention and the resolution were studied. The best HILIC separation was obtained with the amide column and a mobile phase composed of water/ACN containing 0.1% of TFA. The repeatability in terms of retention times and peak areas was then assessed. Finally, the method was applied to the analysis of a second hCG-based drug obtained from urine of pregnant women. Both drugs gave chromatograms with more than 10 peaks. However, they were significantly different, which demonstrated the potential of HILIC method for hCG isoform fingerprinting

391 publications.