Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :
On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets
D. Molino, S. Quignard, C. Gruget, F. Pincet, Y. Chen, M. Piel & J. Fattaccioli
Scientific Reports - 6 29113 - DOI: 10.1038/srep29113 - 2019
The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.
Nano-on-Micro Fibrous Extracellular Matrices for Scalable Expansion of Human Es/Ips Cells
L. Liu, K.-i. Kamei, M. Yoshioka, M. Nakajima, J. Li, N. Fujimoto, S. Terada, Y. Tokunaga, Y. Koyama, H. Sato, K. Hasegawa, N. Nakatsuji and Y. Chen
Biomaterials - 124 47-54 - DOI: 10.1016/j.biomaterials.2017.01.039 - 2019
Human pluripotent stem cells (hPSCs) hold great potential for industrial and clinical applications. Clinical-grade scaffolds and high-quality hPSCs are required for cell expansion as well as easy handling and manipulation of the products. Current hPSC culture methods do not fulfill these requirements because of a lack of proper extracellular matrices (ECMs) and cell culture wares. We developed a layered nano-on-micro fibrous cellular matrix mimicking ECM, named "fiber-on-fiber (FF)" matrix, which enables easy handling and manipulation of cultured cells. While non-woven sheets of cellulose and polyglycolic acid were used as a microfiber layer facilitating mechanical stability, electrospun gelatin nanofibers were crosslinked on the microfiber layer, generating a mesh structure with connected nanofibers facilitating cell adhesion and growth. Our results showed that the FF matrix supports effective hPSC culture with maintenance of their pluripotency and normal chromosomes over two months, as well as effective scaled-up expansion, with fold increases of 54.1 ± 15.6 and 40.4 ± 8.4 in cell number per week for H1 human embryonic stem cells and 253G1 human induced pluripotent stem cells, respectively. This simple approach to mimick the ECM may have important implications after further optimization to generate lineage-specific products.
Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5.
Katz M, Corson F, Keil W,Singhal A, Bae A, Lu Y, Liang Y, Shaham S.
Nat Commun - 10(1) 1882 - doi: 10.1038/s41467-019-09581-4. - 2019
Glutamate is a major excitatory neurotransmitter, and impaired glutamate clearance following synaptic release promotes spillover, inducing extra-synaptic signaling. The effects of glutamate spillover on animal behavior and its neural correlates are poorly understood. We developed a glutamate spillover model in Caenorhabditis elegans by inactivating the conserved glial glutamate transporter GLT-1. GLT-1 loss drives aberrant repetitive locomotory reversal behavior through uncontrolled oscillatory release of glutamate onto AVA, a major interneuron governing reversals. Repetitive glutamate release and reversal behavior require the glutamate receptor MGL-2/mGluR5, expressed in RIM and other interneurons presynaptic to AVA. mgl-2 loss blocks oscillations and repetitive behavior; while RIM activation is sufficient to induce repetitive reversals in glt-1 mutants. Repetitive AVA firing and reversals require EGL-30/Gαq, an mGluR5 effector. Our studies reveal that cyclic autocrine presynaptic activation drives repetitive reversals following glutamate spillover. That mammalian GLT1 and mGluR5 are implicated in pathological motor repetition suggests a common mechanism controlling repetitive behaviors.
Two-step local functionalization of fluoropolymer Dyneon THV microfluidic materials by scanning electrochemical microscopy combined to click reaction
Kadhirvel P, Combès A, Bordron L, Pichon V
Anal. Bioanal. Chem - 411(8) 1525-1536 - doi: 10.1007/s00216-019-01586-8 - 2019
A molecularly imprinted polymer (MIP) was designed in order to allow the selective solid-phase extraction of carbamazepine (CBZ), an anticonvulsant and mood-stabilizing drug, at ultra-trace level from aqueous environmental samples. A structural analog of CBZ was selected as a dummy template and different synthesis conditions were screened. The selectivity of the resulting imprinted polymers was evaluated by studying the retention of CBZ in a solvent similar to the one used for the synthesis. The presence of imprinted cavities in the polymers was then demonstrated by comparing the elution profiles (obtained by using MIP and a non-imprinted polymer, NIP, as a control) of the template, of CBZ, and of a structural analog of CBZ. Then, the extraction procedure was further optimized for the treatment of aqueous samples on the two most promising MIPs, with special attention being paid to the volume and composition of the percolation and washing solutions. The best MIP provided a highly selective retention in tap water with 81% extraction recovery for CBZ in the elution fraction of the MIP and only 14% for NIP. The repeatability of the extraction procedure was demonstrated for both tap and river waters (RSD below 4% in river water) for the drugs CBZ, oxcarbamazepine, and one metabolite (carbamazepine 10,11-epoxide). A MIP capacity of 1.15 μmol g-1 was determined. Finally, an analytical procedure involving the MIP was developed allowing the detection of CBZ at a concentration level of only a few nanograms per liter in river water. The selectivity provided by the MIP resulted in a 3000-fold increase of the signal-to-noise ratio in LC/MS analysis as compared to the use of conventional sorbent. Graphical abstract.
First profiling in hydrophilic interaction liquid chromatography of intact human chorionic gonadotropin isoforms.
Camperi J, Pichon V, Fournier T, Delaunay N
J Pharm Biomed Anal - 10;174 495-499. - doi: 10.1016/j.jpba.2019.06.014 - 2019
The study of glycoproteins is a rapidly growing field, which is not surprising considering that approximately 70% of human proteins are glycosylated and that numerous biological functions are associated to the glycosylation. In this work, our interest focused on the heterodimeric human Chorionic Gonadotropin (hCG) glycoprotein that is the specific hormone of the human pregnancy, consisting of an α and a β subunit, so-called hCGα and hCGβ, respectively. This protein possesses a very high structural heterogeneity, essentially due to the presence of 8 glycosylation sites, but also other types of post-translational modifications. In this study, for the first time, the potential of hydrophilic interaction liquid chromatography (HILIC) was investigated to separate the intact hCG isoforms. Three different HILIC stationary phases were tested using an hCG-based drug as standard, a recombinant hCG. For each stationary phase, the effect of the initial mobile phase composition based on ACN/H2O mixture, the slope of the gradient, the content and nature of the acidic additive (formic acid and trifluoroacetic acid (TFA)), and the addition of a volatile salt (ammonium formate) on the retention and the resolution were studied. The best HILIC separation was obtained with the amide column and a mobile phase composed of water/ACN containing 0.1% of TFA. The repeatability in terms of retention times and peak areas was then assessed. Finally, the method was applied to the analysis of a second hCG-based drug obtained from urine of pregnant women. Both drugs gave chromatograms with more than 10 peaks. However, they were significantly different, which demonstrated the potential of HILIC method for hCG isoform fingerprinting
Investigation of serum proteome homeostasis during radiation therapy by a quantitative proteomics approach
Amira Ouerhani ; Giovanni Chiappetta ; Oussema Souiai ; Halima Mahjoubi ; Joelle Vinh
Biosci Rep - 39 (7) BSR20182319 - doi.org/10.1042/BSR20182319 - 2019
The purpose of the present study is to analyze the serum proteome of patients receiving Radiation Therapy (RT) at different stages of their treatment to discovery candidate biomarkers of the radiation-induced skin lesions and the molecular pathways underlying the radiation signatures. Six stages of RT treatment were monitored from patients treated because of brain cancer: before starting the treatment, during the treatment (four time points), and at 4 weeks from the last RT dose. Serum samples were analyzed by a proteomics approach based on the Data Independent Acquisition (DIA) mass spectrometry (MS). RT induced clear changes in the expression levels of 36 serum proteins. Among these, 25 proteins were down- or up-regulated significantly before the emergence of skin lesions. Some of these were still deregulated after the completion of the treatment. Few days before the appearance of the skin lesions, the levels of some proteins involved in the wound healing processes were down-regulated. The pathway analysis indicated that after partial body irradiation, the expression levels of proteins functionally involved in the acute inflammatory and immune response, lipoprotein process and blood coagulation, were deregulated.
Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein
Stan Perchepied, Nicolas Eskenazi, Chiara Giangrande, Julien Camperi, Thierry Fournier, Joëlle Vinh, Nathalie Delaunay, Valérie Pichon
Biosci Rep - 206 120171 - doi.org/10.1016/j.talanta.2019.120171 - 2019
The mapping of post-translational modifications (PTMs) of proteins can be addressed by bottom-up proteomics strategy using proteases to achieve the enzymatic digestion of the biomolecule. Glycosylation is one of the most challenging PTM to characterize due to its large structural heterogeneity. In this work, two Immobilized Enzyme Reactors (IMERs) based on trypsin and pepsin protease were used for the first time to fasten and improve the reliability of the specific mapping of the N-glycosylation heterogeneity of glycoproteins. The performance of the supports was evaluated with the digestion of human Chorionic Gonadotropin hormone (hCG), a glycoprotein characterized by four N- and four O-glycosylation sites, prior to the analysis of the digests by nanoliquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS). Firstly, the repeatability of the nanoLC-MS/MS was evaluated and a method to control the identification of the identified glycans was developed to validate them regarding the retention time of glycopeptides in reversed phase nanoLC separation. The repeatability of the digestion with trypsin-based IMER was evaluated on the same hCG batch and on three independent batches with common located glycans up to 75%. Then, the performance of the IMER digestions was compared to in-solution digestions to evaluate the qualitative mapping of the glycosylation. It has given rise to 42 out of 45 common glycans between both digestions modes. For the first time, the complementarity of trypsin and pepsin was illustrated for the glycosylation mapping as trypsin led to identifications on 2 out of 4 glycosylation site while pepsin was informative on the 4 glycosylation site. The potential of IMERs for the study of the glycosylation of a protein was illustrated with the comparison of two hCG-based drugs, Ovitrelle® and Pregnyl
Selection Dynamics in Transient Compartmentalization.
Blokhuis A, Lacoste D, Nghe P, Peliti L
Phys. Rev. Lett. - 158101 120(15): - doi: 10.1371/journal.pcbi.1004972 - 2018
Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.
Coupled catabolism and anabolism in autocatalytic RNA sets.
Arsène S, Ameta S, Lehman N, Griffiths AD, Nghe P.
Nucleic Acids Res. - 46(18) 9660-9666 - doi: 10.1093/nar/gky598. - 2018
The ability to process molecules available in the environment into useable building blocks characterizes catabolism in contemporary cells and was probably critical for the initiation of life. Here we show that a catabolic process in collectively autocatalytic sets of RNAs allows diversified substrates to be assimilated. We modify fragments of the Azoarcus group I intron and find that the system is able to restore the original native fragments by a multi-step reaction pathway. This allows in turn the formation of catalysts by an anabolic process, eventually leading to the accumulation of ribozymes. These results demonstrate that rudimentary self-reproducing RNA systems based on recombination possess an inherent capacity to assimilate an expanded repertoire of chemical resources and suggest that coupled catabolism and anabolism could have arisen at a very early stage in primordial living systems.
Sign epistasis caused by hierarchy within signalling cascades
Nghe P, Kogenaru M, Tans SJ
Nat Commun - 1451 9660-9666 - 10.1038/s41467-018-03644-8. - 2018
The ability to process molecules available in the environment into useable building blocks characterizes catabolism in contemporary cells and was probably critical for the initiation of life. Here we show that a catabolic process in collectively autocatalytic sets of RNAs allows diversified substrates to be assimilated. We modify fragments of the Azoarcus group I intron and find that the system is able to restore the original native fragments by a multi-step reaction pathway. This allows in turn the formation of catalysts by an anabolic process, eventually leading to the accumulation of ribozymes. These results demonstrate that rudimentary self-reproducing RNA systems based on recombination possess an inherent capacity to assimilate an expanded repertoire of chemical resources and suggest that coupled catabolism and anabolism could have arisen at a very early stage in primordial living systems.

405 publications.