Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :
Chasing Aqueous Biphasic Systems from Simple Salts by Exploring the LiTFSI/LiCl/H2O Phase Diagram
MIE - Matériaux Innovants pour l'Energie - Nicolas Dubouis, Chanbum Park, Michael Deschamps, Soufiane Abdelghani-Idrissi, Matej Kanduč, Annie Colin, Mathieu Salanne, Joachim Dzubiella, Alexis Grimaud, Benjamin Rotenberg
ACS Central Science - 5 640-643 - - 2019
Aqueous biphasic systems (ABSs), in which two aqueous phases with different compositions coexist as separate liquids, were first reported more than a century ago with polymer solutions. Recent observations of ABS forming from concentrated mixtures of inorganic salts and ionic liquids raise the fundamental question of how “different” the components of such mixtures should be for a liquid–liquid phase separation to occur. Here we show that even two monovalent salts sharing a common cation (lithium) but with different anions, namely, LiCl and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), may result in the formation of ABSs over a wide range of compositions at room temperature. Using a combination of experimental techniques and molecular simulations, we analyze the coexistence diagram and the mechanism driving the phase separation, arising from the different anion sizes. The understanding and …
Inkjet Printing of Latex‐Based High‐Energy Microcapacitors
MIE - Matériaux Innovants pour l'Energie - Chasing Aqueous Biphasic Systems from Simple Salts by Exploring the LiTFSI/LiCl/H2O Phase Diagram N Dubouis, C Park, M Deschamps, S Abdelghani-Idrissi, M Kanduč, ... ACS Central Science 5 (4), 640-643
Advanced Functional Materials - 1901884 - - 2019
Microenergy storage devices are appealing and highly demanded for diverse miniaturized electronic devices, ranging from microelectromechanical system, robotics, to sensing microsystems and wearable electronics. However, making high‐energy microcapacitors with currently available printing technologies remains challenging. Herein, the possibility to use latex polyvinylidene fluoride (PVDF) as aqueous ink for making dielectric capacitors at the microscale is shown. The dielectric properties of printed microcapacitors can be optimized based on a novel approach, i.e., mixing PVDF latex with polyvinyl alcohol (PVA) to realize dielectric organic nanocomposites. The PVA prevents the coalescence of PVDF nanoparticles and serves as a continuous matrix phase with high dielectric breakdown strength. While the well‐dispersed PVDF nanoparticles serve as highly polarizable and isolated domains, providing large
A new way to measure viscosity in droplet-based microfluidics for high throughput analysis
MIE - Matériaux Innovants pour l'Energie - Estelle André, Nicolas Pannacci, Christine Dalmazzone, Annie Colin
Soft Matter - 3 504-514 - - 2019
In this work, we propose a new way to measure the viscosity of samples in a microfluidic device. By analysing the shape of droplets after an expansion, we can measure the viscosity of the phase inside the droplet knowing the surface tension between the two liquids, the flow rate, the geometry of the channel and the viscosity of the continuous phase. This work paves the way for future high throughput studies in the framework of digital microfluidics.
Selection Dynamics in Transient Compartmentalization.
Laboratoire Biochimie - Blokhuis A, Lacoste D, Nghe P, Peliti L
Phys. Rev. Lett. - 158101 120(15): - doi: 10.1371/journal.pcbi.1004972 - 2018
Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.
Coupled catabolism and anabolism in autocatalytic RNA sets.
Laboratoire Biochimie - Arsène S, Ameta S, Lehman N, Griffiths AD, Nghe P.
Nucleic Acids Res. - 46(18) 9660-9666 - doi: 10.1093/nar/gky598. - 2018
The ability to process molecules available in the environment into useable building blocks characterizes catabolism in contemporary cells and was probably critical for the initiation of life. Here we show that a catabolic process in collectively autocatalytic sets of RNAs allows diversified substrates to be assimilated. We modify fragments of the Azoarcus group I intron and find that the system is able to restore the original native fragments by a multi-step reaction pathway. This allows in turn the formation of catalysts by an anabolic process, eventually leading to the accumulation of ribozymes. These results demonstrate that rudimentary self-reproducing RNA systems based on recombination possess an inherent capacity to assimilate an expanded repertoire of chemical resources and suggest that coupled catabolism and anabolism could have arisen at a very early stage in primordial living systems.
Sign epistasis caused by hierarchy within signalling cascades
Laboratoire Biochimie - Nghe P, Kogenaru M, Tans SJ
Nat Commun - 1451 9660-9666 - 10.1038/s41467-018-03644-8. - 2018
The ability to process molecules available in the environment into useable building blocks characterizes catabolism in contemporary cells and was probably critical for the initiation of life. Here we show that a catabolic process in collectively autocatalytic sets of RNAs allows diversified substrates to be assimilated. We modify fragments of the Azoarcus group I intron and find that the system is able to restore the original native fragments by a multi-step reaction pathway. This allows in turn the formation of catalysts by an anabolic process, eventually leading to the accumulation of ribozymes. These results demonstrate that rudimentary self-reproducing RNA systems based on recombination possess an inherent capacity to assimilate an expanded repertoire of chemical resources and suggest that coupled catabolism and anabolism could have arisen at a very early stage in primordial living systems.
Selection Dynamics in Transient Compartmentalization
Laboratoire Biochimie - doi.org/10.1103/PhysRevLett.120.158101
Phys. Rev. Lett. - 120 158101 - doi.org/10.1103/PhysRevLett.120.158101 - 2018
Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.
Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation.
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, Montealegre S, Lawand M, Evnouchidou I, Huber KJ, Chadt A, Zwick M, Vargas P, Dussiot M, Lennon-Dumenil AM, Brocker T, Al-Hasani H, van Endert P.
Cell Reports - 24(13) 3568-3581 - doi: 10.1016/j.celrep.2018.08.041 - 2018
Both cross-presentation of antigens by dendritic cells, a key pathway triggering T cell immunity and immune tolerance, and survival of several pathogens residing in intracellular vacuoles are intimately linked to delayed maturation of vesicles containing internalized antigens and microbes. However, how early endosome or phagosome identity is maintained is incompletely understood. We show that Toll-like receptor 4 (TLR4) and Fc receptor ligation induces interaction of the GTPase Rab14 with the kinesin KIF16b mediating plus-end-directed microtubule transport of endosomes. As a result, Rab14 recruitment to phagosomes delays their maturation and killing of an internalized pathogen. Enhancing anterograde transport by overexpressing Rab14, promoting the GTP-bound Rab14 state, or inhibiting retrograde transport upregulates cross-presentation. Conversely, reducing Rab14 expression, destabilizing Rab14 endosomes, and inhibiting anterograde microtubule transport by Kif16b knockdown compromise cross-presentation. Therefore, regulation of early endosome trafficking by innate immune signals is a critical parameter in cross-presentation by dendritic cells.
Diversification of human plasmacytoid predendritic cells in response to a single stimulus
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Alculumbre SG, Saint-André V1, Di Domizio J, Vargas P, Sirven P, Bost P, Maurin M, Maiuri P, Wery M, Roman MS, Savey L, Touzot M, Terrier B, Saadoun D, Conrad C, Gilliet M, Morillon A, Soumelis V.
Nat Immunol. - 19(1) 63-75 - doi: 10.1038/s41590-017-0012-z - 2018
Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids
Laboratoire Biologie cellulaire systémique de la polarité et de la division - Grégory Beaune, Carles Blanch-Mercader, Stéphane Douezan, Julien Dumond, David Gonzalez-Rodriguez, Damien Cuvelier, Thierry Ondarçuhu, Pierre Sens, Sylvie Dufour, Michael P. Murrell, and Françoise Brochard-Wyart
Cell Sci - 115 (51) 12926-12931 - doi.org/10.1073/pnas.1811348115 - 2018
Despite extensive knowledge on the mechanisms that drive single-cell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis, remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrow range of rigidities. Fast expansion gives rise to the accumulation of mechanical tension that leads to the rupture of cell–cell contacts and the nucleation of holes within the monolayer, which becomes unstable and undergoes dewetting like a liquid film. This leads to a symmetry breaking and causes the entire aggregate to move as a single entity. Varying the substrate rigidity modulates the extent of dewetting and induces different modes of aggregate motion: “giant keratocytes,” where the lamellipodium is a cell monolayer that expands at the front and retracts at the back; “penguins,” characterized by bipedal locomotion; and “running spheroids,” for nonspreading aggregates. We characterize these diverse modes of collective migration by quantifying the flows and forces that drive them, and we unveil the fundamental physical principles that govern these behaviors, which underscore the biological predisposition of living material to migrate, independent of length scale.

410 publications.