Université PSL

Publications

RECHERCHER

Laboratoire :
Auteur :
Revue :
Année :
Leukocyte Migration and Deformation in Collagen Gels and Microfabricated Constrictions
Sáez PJ, Barbier L, Attia R, Thiam HR, Piel M, Vargas P.
Methods Mol Biol. - 1749 361-373 - doi: 10.1007/978-1-4939-7701-7_26. - 2018
In multicellular organisms, cell migration is a complex process. Examples of this are observed during cell motility in the interstitial space, full of extracellular matrix fibers, or when cells pass through endothelial layers to colonize or exit specific tissues. A common parameter for both situations is the fast adaptation of the cellular shape to their irregular landscape. In this chapter, we describe two methods to study cell migration in complex environments. The first one consists in a multichamber device for the visualization of cell haptotaxis toward the collagen-binding chemokine CCL21. This method is used to study cell migration as well as deformations during directed motility, as in the interstitial space. The second one consists in microfabricated channels connected to small constrictions. This procedure allows the study of cell deformations when single cells migrate through small holes and it is analogous to passage of cells through endothelial layers, resulting in a simplified system to study the mechanisms operating during transvasation. Both methods combined provide a powerful hub for the study of cell plasticity during migration in complex environments.
Leukocyte Migration and Deformation in Collagen Gels and Microfabricated Constrictions.
Sáez PJ, Barbier L, Attia R, Thiam HR, Piel M, Vargas P
Methods Mol Biol. - 1749 361-373 - doi: 10.1007/978-1-4939-7701-7_26 - 2018
In multicellular organisms, cell migration is a complex process. Examples of this are observed during cell motility in the interstitial space, full of extracellular matrix fibers, or when cells pass through endothelial layers to colonize or exit specific tissues. A common parameter for both situations is the fast adaptation of the cellular shape to their irregular landscape. In this chapter, we describe two methods to study cell migration in complex environments. The first one consists in a multichamber device for the visualization of cell haptotaxis toward the collagen-binding chemokine CCL21. This method is used to study cell migration as well as deformations during directed motility, as in the interstitial space. The second one consists in microfabricated channels connected to small constrictions. This procedure allows the study of cell deformations when single cells migrate through small holes and it is analogous to passage of cells through endothelial layers, resulting in a simplified system to study the mechanisms operating during transvasation. Both methods combined provide a powerful hub for the study of cell plasticity during migration in complex environments.
Mixed Copolymer Adlayers Allowing Reversible Thermal Control of Single Cell Aspect Ratio.
Dalier F1, Dubacheva GV1, Coniel M1, Zanchi D1,2, Galtayries A, Piel M, Marie E1, Tribet C1.
ACS Appl Mater Interfaces - 10(3) 2253-2258 - doi: 10.1021/acsami.7b18513. - 2018
Dynamic guidance of living cells is achieved by fine-tuning and spatiotemporal modulation on artificial polymer layers enabling reversible peptide display. Adjustment of surface composition and interactions is obtained by coadsorption of mixed poly(lysine) derivatives, grafted with either repellent PEG, RGD adhesion peptides, or T-responsive poly(N-isopropylacrylamide) strands. Deposition of mixed adlayers provides a straightforward mean to optimize complex substrates, which is here implemented to achieve (1) thermal control of ligand accessibility and (2) adjustment of relative adhesiveness between adjacent micropatterns, while preserving cell attachment during thermal cycles. The reversible polarization of HeLa cells along orthogonal stripes mimics guidance along natural matrices.
Diversification of human plasmacytoid predendritic cells in response to a single stimulus
Alculumbre SG, Saint-André V, Di Domizio J, Vargas P, Sirven P, Bost P, Maurin M, Maiuri P, Wery M, Roman MS, Savey L, Touzot M, Terrier B, Saadoun D, Conrad C, Gilliet M, Morillon A, Soumelis V
Nat Immunol. - 19(1) 63-75 - doi: 10.1038/s41590-017-0012-z. - 2018
Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.
Electrostrictive polymer composites based on liquid crystalline graphene for mechanical energy harvesting
Jinkai Yuan, Wilfrid Neri, Cécile Zakri, Philippe Poulin, Annie Colin
Multifunctional Materials - 1-4 - - 2018
High electromechanical coupling is critical to perform effective conversion between mechanical and electrical energy for various applications of electrostrictive polymers. Herein, a giant electrostriction effect is reported in liquid crystalline graphene doped dielectric elastomers. The materials are formulated by an original phase transfer method which allows the solubilization of graphenic monolayers in non-polar solvents. Dielectric spectroscopy is combined with tensile test devices to measure the true electrostriction coefficients with differentiating the Maxwell stress effect. Because of their unique liquid crystal structure, the resultant composites show a giant relative permittivity and ultralarge electrostriction coefficient. This work offers a promising pathway to design novel high performance electrostrictive polymer composites as well as to provide insights into mechanisms of true electrostriction in electrically …
Microporous electrostrictive materials for vibrational energy harvesting
Mickaël Pruvost, Wilbert J Smit, Cécile Monteux, Philippe Poulin, Annie Colin
Multifunctional Materials - 1 015004 - - 2018
We present electrostrictive materials with excellent properties for vibrational energy harvesting applications. The developed materials consist of a porous carbon black composite, which is processed using water-in-oil emulsions. In combination with an insulating layer, the investigated structures exhibit a high effective relative dielectric permittivity (up to 182 at 100 Hz) with very low effective conductivity (down to 2.53 10− 8 S m− 1). They can generate electrical energy in response to mechanical vibrations with a power density of 0.38 W m− 3 under an applied bias electric field of 32 V. They display figures or merit for energy harvesting applications well above reference polymer materials in the field, including fluorinated co-and ter-polymers synthetized by heavy chemical processes. The production process of the present materials is based on non hazardous and low-cost chemicals. The soft dielectric materials are …
Shear Rheology Control of Wrinkles and Patterns in Graphene Oxide Films
Franco Tardani, Wilfrid Neri, Cécile Zakri, Hamid Kellay, Annie Colin, Philippe Poulin
Langmuir - 9(34) 2996-3002 - - 2018
Drying graphene oxide (GO) films are subject to extensive wrinkling, which largely affects their final properties. Wrinkles were shown to be suitable in biotechnological applications; however, they negatively affect the electronic properties of the films. Here, we report on wrinkle tuning and patterning of GO films under stress-controlled conditions during drying. GO flakes assemble at an air–solvent interface; the assembly forms a skin at the surface and may bend due to volume shrinkage while drying. We applied a modification of evaporative lithography to spatially define the evaporative stress field. Wrinkle alignment is achieved over cm2 areas. The wavelength (i.e., wrinkle spacing) is controlled in the μm range by the film thickness and GO concentration. Furthermore, we propose the use of nanoparticles to control capillary forces to suppress wrinkling. An example of a controlled pattern is given to elucidate the …
All-organic microelectromechanical systems integrating electrostrictive nanocomposite for mechanical energy harvesting
Hussein Nesser, Hélène Debéda, Jinkai Yuan, Annie Colin, Philippe Poulin, Isabelle Dufour, Cédric Ayela
Nano energy - 44 1-6 - - 2018
Recent advances in the field of microelectromechanical systems (MEMS) have generated great interest in the substitution of inorganic microcantilevers by organic ones, due to their low cost, high flexibility and a simplified fabrication by means of printing methods. Here, we present the integration of electrostrictive nanocomposites into organic microcantilever resonators specifically designed for mechanical energy harvesting from ambient vibrations. Strain sensitive nanocomposite materials composed of reduced graphene oxide (rGO) dispersed in polydimethylsiloxane (PDMS) are integrated into all-organic MEMS by means of an innovative low-cost and environment friendly process by combining printing techniques and xurography. Static tests of the electrostrictive nanocomposite with 3.7 wt% rGO show good performances with variations of capacitance that exceeds 4% for strain values lower than 0.55% as the …
Giant Electrostriction of Soft Nanocomposites Based on Liquid Crystalline Graphene
Jinkai Yuan, Alan Luna, Wilfrid Neri, Cécile Zakri, Annie Colin, Philippe Poulin
ACS nano - 12(2) 1688-1695 - - 2018
High electromechanical coupling is critical to perform effective conversion between mechanical and electrical energy for various applications of electrostrictive polymers. Herein, a giant electrostriction effect is reported in liquid crystalline graphene-doped dielectric elastomers. The materials are formulated by a phase-transfer method which allows the solubilization of graphenic monolayers in nonpolar solvents. Dielectric spectroscopy is combined with tensile test devices to measure the true electrostriction coefficients with differentiating the Maxwell stress effect. Because of their liquid crystal structure, the resultant composites show an ultralarge electrostriction coefficient (∼10–14 m2/V2 at 0.1 Hz) coupled with good reproducibility during cycles at high deformation rates. This work offers a promising pathway to design high-performance electrostrictive polymer composites as well as to provide insights into mechanisms …
Shear thinning in non-Brownian suspensions
Guillaume Chatté, Jean Comtet, Antoine Niguès, Lydéric Bocquet, Alessandro Siria, Guylaine Ducouret, François Lequeux, Nicolas Lenoir, Guillaume Ovarlez, Annie Colin
Soft Matter - 6(14) 879-893 - - 2018
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive …

405 publications.