Les projets de recherche

L’IPGG offre des financements doctoraux ou postdoctoraux pour des projets où la microfluidique joue un rôle central au sein des équipes de recherche membres de l'IPGG.

La période actuelle est confrontée à des défis considérables pour la société, notamment dans les domaines de la santé, de l’énergie ou encore de l’environnement. L’innovation dans ces domaines nécessite des avancées scientifique et technologiques majeures.

L'Institut Pierre-Gilles de Gennes est en mesure de relever ce défi ambitieux. Son domaine de prédilection, la micro- et la nano-fluidique, est au cœur du progrès scientifique pour relever ces défis. L’Institut implique des équipes ayant une expertise reconnue au niveau international sur ces domaines.

Les derniers appels Open Call, High Risk ou encore Water & Energy visent à soutenir des projets portant une idée innovante dans le domaine de la nano- et micro- fluidique autour des thématiques scientifiques portées par l’IPGG. L’objectif de ces appels à projet est de développer des initiatives ambitieuses et d’ouvrir le spectre scientifique de l’IPGG.



Microplastic

Equipes :
LBC
Porteurs du projet :
Ludwick Leibler, Andrew Griffiths & Yannick Rondelez
Année d'obtention :
2021

We plan to apply a combination of physico-chemical and biotechnological method to help circularize the plastic economy. To this end, we will create a droplet microfluidic platform that allows high-throughput screening and directed evolution of highly active plastic degrading enzymes (that can work on any specific plastic, in particular “real” plastic waste), while also adapting the microscopic/mesoscopic structure of plastics to these new biochemical recycling pathways.


Microbiote des sols agricoles

Equipes :
LCMD
Porteurs du projet :
Jean Baudry
Année d'obtention :
2021

Les communautés microbiennes constituent un composant essentiel des écosystèmes, et dans les sols elles peuvent apporter les nutriments nécessaires à la croissance des plantes, voir les protéger contre les phytopathogènes. L’idée d’apporter des microorganismes extérieurs à un sol pour favoriser la croissance des cultures est séduisante, mais peine encore à devenir une réalité économique. Notre objectif est d’étudier comment l’apport de microorganismes exogènes est toléré ou pas par le microbiote d’un sol, et s’il est possible de prévoir cette réponse. A terme, l’objectif serait de développer des outils d’aide à la décision pour l’agriculteur, pour savoir si un type de sol est permissif aux phytopathogènes ou pas, et quelle dose amener de microorganismes pour améliorer le rendement de ses cultures.


Microparticle distribution in vortex flows

Equipes :
CS
Porteurs du projet :
Anke Lindner
Année d'obtention :
2021

Synthetic microparticles increasingly penetrate the water cycle and accumulate in the environment [Akdogan2019]. They stem from cleaning and personal care products or from microfibers emitted by the textile industry. Other harmful synthetic microparticles reach the environment through different paths such as emissions from burning of fossil fuels or degradation of plastic debris in the oceans. They pose a direct risk for human health since they are constantly being exchanged through water and air flows between the environment and the human body via ingestion and inhalation. They are also a threat for the marine environment and their toxicity has been demonstrated on microplankton [Michalec2017]. Due to their high prevalence in diverse flow regimes, it is crucial to understand the mutual and fundamental interaction between microparticles and different flows, especially containing non-Newtonian fluids which are common in biological, oceanographic and industrial flows.
Using laboratory model microsystems, we will address the following questions in this project: How do microparticles (MP) spatially organize in vortex flows as a function of particle properties (as particle size, shape, mechanical particle properties or density difference with the surrounding fluid) and flow properties (including the presence of complex fluids and weak inertia). We will first investigate very well controlled model particles and then extend the investigation to more realistic cases as microplastic debris, fiber fragments or living micro-organisms. Following to that, we will investigate how does particle organization changes when going from the dilute to a more concentrated particle concentration? And finally, how do particle dynamics differ in the bulk or at interfaces.


Tricolor soft nanofluidics and single-molecule directed evolution

Equipes :
INDYSOFT
Porteurs du projet :
Joshua Mcgraw & Marco Ribezzi
Année d'obtention :
2021

Macromolecular and mesoscale investigations of soft and biomolecular systems require state-of-the-art tools to make breakthrough discoveries. This proposal describes a multicolor TIRF microscope setup, to be built at IPGG. The need for such instrument cuts across disciplines. We exemplify this describing two very different applications: [1] nano-scale fluid dynamics of complex (i.e. non-Newtonian) colloid-laden, polymer solutions; and [2] single-molecule observations of biomolecular interactions between surface-grafted receptor molecules and freely diffusing fluorescent ligands in the context of diagnostic tests and directed evolution studies. In these contexts, we aim to overhaul the total internal reflection fluorescence microscope (TIRFM) of the indySoft/MMN lab by converting it from a monochromatic to a tri-color probe with single-molecule sensitivity, and to enhance the accessible time scales, from seconds, to minutes and hours. The developed device will enable to distinguish distinct objects from single biomolecules to mesoscale colloids and to disentangle the different microscopic objects that could be responsible for heretofore unexplained nanofluidic phenomena. The accent of this proposal is on the development of simultaneous three-color TIRF, as achieved using an optical splitter. This will allow us to image three spectral windows simultaneously maintaining the full temporal resolution of our acquisition device and allowing for true color-coincidence measurements.


Dissecting the response of the tumor microenvironment to nanoparticles-mediated hyperthermia combined with anti-cancer drugs in tumor on chip devices - HT On Chip

Equipes :
MMBM
Porteurs du projet :
Stéphanie Descroix & Claire Wilhelm
Année d'obtention :
2021

Among the different therapeutic strategies, combination therapy that associates two or more therapeutic agents is now considered as a cornerstone of cancer therapy. Here we will develop a new generation of tumor on chip (ToC) to further investigate the efficacy of magnetic nanoparticles – mediated thermal therapy (hyperthermia) in a controlled biomimetic tumor microenvironment. We will in particular explore in ToC the impact of nanoparticles-mediated hyperthermia (HT) at both cellular and microenvironment levels as a single therapy or in combination with anti-cancer drugs to unravel the synergetic effect of such combination. This will be studied with breast and lung cancer (humanized) models in terms of dose and range of action. We expect that the understanding of the mechanisms underlying the tumor microenvironment response to combined nanoparticles-mediated HT and chemotherapy or immunotherapy might improve their clinical implementation in terms of vectors, treatment sequencing and dosing.


Nouvelles membranes pour l’énergie bleue

Equipes :
MIE
Porteurs du projet :
Annie Colin
Année d'obtention :
2021

Lorsqu’un mètre cube d’eau de mer est mélangé à un mètre cube d’eau de rivière, 1 Mega Joule d’énergie de mélange est libérée. Trouver un moyen performant de collecter cette énergie serait une
avancée majeure dans le domaine des énergies renouvelables. Actuellement aucun des procédés existants n’est rentable financièrement. Une étude économique montre que le seuil de rentabilité est
fixé à 2.4 Watt/m2 [1,2].
Dans ce projet nous proposons de comparer deux stratégies en rupture pour améliorer les procédés d’électrodialyse inverse.
-Tout d’abord, nous proposons de déposer sur les membranes commerciales des couches poreuses conductrices du courant électrique sur lesquelles les ions s’adsorbent. La (ou les) membranes ainsi
recouvertes sera(ont) reliée(s) au collecteur de courant graphite par des tissus de carbone conducteur de haute perméabilité. Ainsi le potentiel de circuit ouvert des cellules sera multiplié par
deux sans que la résistance interne ne soit affectée. Les électrodes choisies seront des électrodes capacitives de type carbone. La densité de puissance des cellules actuelles sera multipliée par 4 et
dépassera le seuil de rentabilité financière.
- Deuxièmement, nous proposons de déposer sur la membrane commerciale des couches poreuses conductrice du courant électrique et faites en partie avec des matériaux d’intercalation du sodium.
La membrane ainsi recouverte sera reliée au collecteur de courant graphite par des tissus de carbone conducteur de haute perméabilité. De la même façon que précédemment, le potentiel de
circuit ouvert sera multiplié par 2. Le procédé capacitif précédemment en jeu sera remplacé par un procédé faradique de surface plus efficace. Au delà du côté appliqué, le projet permettra d’apporter un éclairage nouveau sur les phénomènes de transport des ions dans les membranes poreuses.


Nanoarchitertured membranes for ion-based electroosmotic water purification

Equipes :
MICROMEGAS
Porteurs du projet :
Lucie Ries & J. Perez-Carvajal
Année d'obtention :
2021

Access to clean water is essential for all as it is central to every major challenge the world faces today. Contaminants to the potential drinkable water are coming from different sources and include from colorants and pesticides to drugs and hormones and has implied that the development at the molecular range of filtering and separating technologies a current touchstone for our society. In this project, named ‘Nanoarchitectured membranes for ion-based electroosmotic water purification’, a new concept of nanostructured membranes will be developed. A new class of membranes based on the promising metal-organic framework materials are designed and will be synthesized and then test in the ion-based processes, starting on electroosmotic water purificacion. This new class of membranes will result from the induced assembly of nanocrystals of Ti-MOFs, with controlled size and shape, to produce macroscopic hierarchical metal–organic frameworks structures by the assembly of their nanoparticles into functional supercrystals. These supercrystals will combine filtering and removal of particles and molecules by size exclusion thought their pores, meanwhile the Titanium nature of their crystalline nanoparticle framework will induce the electro-osmotic flow. We will then compare experimental results of different MOF membranes to evaluate the critical parameters that govern the
phenomena, helped by the fine tunability that MOFs present. The rationalization of this promising phenomena, that increase the flux and transport at the nanoscale maintaining low energetical and economic costs, will pave its development and further implementation in the large-scale decontamination processes. Furthermore, our current processes require a good selection of the electrodes to be used and their performance. The membranar supercrystals approach will allow us to explore the performance of novel electrodes, required for the energy efficiency of our separation process and related phenomena.


Single nuclei on chip - morphological and genetic responses to actin-based deformations

Equipes :
NBMS
Porteurs du projet :
Ayako Yamada, Nathalie Delgehyr & Julie Plastino
Année d'obtention :
2021

In the developing organism, cells are submitted to forces that participate in fate determination. These forces may be directly transmitted to the nucleus through the actin cytoskeleton to control gene expression. Yet, the control mechanisms and their effect on differentiation are unclear. To elucidate specifically the role of the actin cytoskeleton, we combine a minimal reconstituted system and a microfluidic platform, where thousands of isolated nuclei are immobilized along with actin and actin-binding proteins. This will allow for quantitative analyses of the role of actin on physical deformation of nuclei by high-throughput imaging and on the associated changes in gene expression, notably those important for genome integrity and differentiation, by mRNA analyses such as mRNA FISH and mRNA sequencing. This interdisciplinary project combining biology, technological development, and biophysics perfectly fits the framework of “Single Cell technologies” of this call. The expected results will have a high impact in the field of cell mechanics, as well as broad implications in other fields, such as developmental biology and cancer research.


Genetically encoded soft microfluidic interfaces

Equipes :
NBMS
Porteurs du projet :
Damien Baigl & Cécile Monteux
Année d'obtention :
2021

Liquid/liquid or liquid/air soft interfaces are at the heart of a very large number of dispersed materials (drops, emulsions, foams) both for daily use and for industrial applications (hygiene, cosmetics, food or pharmaceutical products, for example). Interface‐rich, dispersed materials are particularly well suited for implementation in microfluidics, from their engineering to their characterization and applications. The properties of these interfaces are traditionally modulated by formulation approaches, for example by adding surfactants, colloids or polymers. This allows a fine adjustment of the properties of a given system but requires a new formulation for each system considered and makes it difficult to obtain dynamic or evolutive properties. Another approach consists in applying stimuli, such as temperature, electric field or light, which allows dynamic control but can disturb the system (important heating, for example) or require specific properties (e.g., stimulable materials, transparency for photostimulation, etc). Finally, contrary to solid/liquid interfaces, classical soft interfaces (water/oil, water/air) usually have low surface reactivity, so that their chemical functionalization remains difficult.
For this PhD project, we wish to explore a radically different way of engineering functional soft/dispersed materials and making them intrinsically tunable and dynamic. The principle consists in incorporating a DNA coding for a protein with the property of self‐assembling at the interfaces and synthesizing this protein by cellfree expression in situ. We will study in particular the cell‐free expression of BslA, a well‐documented protein involved in biofilm formation and known for its strong and various interfacial properties, as well explore the possibility to express some fungal hydrophobins that are amphiphilic proteins produced by filamentous fungi.


PHOTOBIM : Photoactive biointerfaces and microfluidics for the controlled actuation of cells

Equipes :
CPBMV
Porteurs du projet :
Emmanuelle Marie
Année d'obtention :
2021

The ability of cells to perceive and respond to their microenvironment is essential for all aspects of an organism (development, life, regeneration). This project aims at developing a new biomimetic platform, where key biomolecules will be presented in a controlled manner in space and time, in order to mimic the interactions of the cells with their environment. Many signaling pathways are regulated by the joint action of soluble factors (such as growth factors) and extracellular matrix-bound ligands. The platform will thus combine microfluidics systems to control gradients of soluble molecules, with an innovative substrate allowing to reversibly present or hide a ligand upon light illumination. Our strategy is to combine the use of a PLL-g-PNIPAM copolymer approach that allows modulation of ligand accessibility upon temperature switch, with the generation of photothermal gradients in the vicinity of gold nanoparticles by thermoplasmonic excitation. As a proof of concept, we will focus on mimicking the interactions of the cells and their environment during the epithelial-mesenchymal transition. This transition is highly involved in morphogenesis and processes such as wound healing, tumour invasion, and metastasis.


47 projets.