Université PSL

Les projets de recherche

L’IPGG offre des financements postdoctoraux pour des projets où la microfluidique joue un rôle central au sein des équipes de recherche membres de l'IPGG.

Nous mettons un accent particulier sur les projets "à haut risque scientifique", ceux qui sont difficiles à financer par les sources habituelles (ANR, etc.).

Nous donnons la possibilité de nous proposer plusieurs thèses pour un seul projet au sein de différents laboratoires de l’IPGG.

Nous souhaitons soutenir un ou deux projets de plus grande ampleur pour lequel, grâce à une synergie mise en œuvre au sein de l’IPGG, il sera possible de relever des défis d’envergure.



A Reactor for the emergence of EVOlution from LIfe’s building blocks (REVOLI)

Equipes :
LBC
Porteurs du projet :
Tommaso Fraccia & Philippe Nghe
Année d'obtention :
2020

The Miller-Urey experiment has revolutionized the field of the origin of life (OoL) by showing that chemical mixtures in prebiotic conditions could lead to the synthesis of life’s building blocks. We want to tackle the next step: explain how building blocks can polymerize and self-organize into compartmentalized reaction networks capable of evolution, thus making the bridge between physico-chemistry and biology.
We will set-up an experiment where mixtures of biomolecular building blocks (of RNA, peptides, lipids) are submitted to dry-wet cycles in an open reactor. This implementation of Darwin’s “warm little pond” with day-night cycles provides two key ingredients: enhanced reactivity during the dry phase, and compartmentalization of chemical networks in vesicles during the wet phase. We will study the emergence of evolution, the signature of which are an increasing complexity of biopolymers across cycles and changes in the physical properties of vesicles which correlate with their ability to persist under selection. If successful, this experiment would be the first demonstration of spontaneous emergence of evolution in a physico-chemical system. Furthermore, it would open a completely novel avenue in synthetic biology, by-passing the need to build complex artificial cells while allowing the same range of applications: it will become possible to leverage the power of Darwinian evolution


RUN Project : Drug discovery through cell migration

Equipes :
BIO6
Porteurs du projet :
Pablo VARGAS & Dominique STOPPA-LYONNET
Année d'obtention :
2020

In biomedicine, one of the main worldwide challenges is the development of therapeutic strategies for the medical care of primary immune deficiencies (PIDs). PIDs originate from mutations in genes required for the immune function, making patients prone to infections, auto-immunity and cancer. More than 400 PIDs have been identified, affecting about 30,000 individuals in Europe, for which there is no curative treatment. Due to the high economic and societal impact, the European Union has recognized “translational research on rare diseases” as a public health priority, emphasizing the urgency for novel therapeutics.


A conductive soft granular material for water desalinization

Equipes :
LCMD
Porteurs du projet :
Nicolas Bremond
Année d'obtention :
2020

Water being an electronically insulatingmaterial, electronic conduction between two electrodes immerged in water is solely possible by directly wiring the two electrodes. Such a wiring can be obtained by dispersing
electrically conductive particles that are connected and which form a so-called percolated network The ability to conduct electrons in an aqueous media under flow opens new strategies in the area of energy management or water desalinisation. Here, we propose to study a new concept of flowing electrodes having a high conductive
area while easily flowing. The basic principle is to encapsulate large amount of conductive particles in a polymer network shaped as beads, thus forming a soft granular material. The main objectives of the project are to upscale the production of subPmillimetre conductive hydrogel beads and to build an experimental set-up incorporating a flow capacitive deionization device.


MimeCodr : Microfluidic Metamaterials with Coiled Droplets

Equipes :
MMN
Porteurs du projet :
Joshua McGraw
Année d'obtention :
2020

Low-cost micro-coils were recently developed by taking advantage of a spontaneous winding of micrometric fibers around polymer droplets with sizes in the 100 μm range. The main goals of MimeCodr are thus two-fold: i) to structurally arrange many Coiled Droplets (CD) using a microfluidics-based pathway to ii) form Metamaterials exhibiting the electromagnetic properties of a Hybridization Bandgap (MHB). The fabrication of an MHB requires the synthesis of many of CDs which is possible thanks to current microfluidics technologies. The success of this project will enable the design of a new class of electromagnetic devices which combines low fabrication cost with regard to existing microfabrication processes, and mechanical flexibility.
The first step is to develop a microfluidic chip in which CDs are assembled in series (deliverable 1, cf. sct 5 & pg 6). Then we will optimize the structural properties of the two-dimensional assembly to create a material made of a collection of CDs (deliverable 2). The electromagnetic properties will be optimized numerically by developing a numerical scheme under COMSOL (deliverable 3). The final output of this project will consist in having a prototype (deliverable 4) whose electromagnetic properties will be further investigated in the laboratories of
Thales Research and Technology.


New Hybrid plasma-catalytic methanation of CO2

Equipes :
2PM
Porteurs du projet :
Stéphanie Ognier
Année d'obtention :
2020

The utilization of cold plasmas in combination with an heterogeneous catalyst has recently proven to boost the kinetically impeded CO2 hydrogenation reaction at low temperature and pressure. Recently, our team revealed that the mechanism is of the electrocatalytic type and that the polarization of the catalyst surface is a key parameter for the process performance. Nevertheless, there is still a lack of understanding about the precise effect of the plasma, as well as on its coupling to a catalytic system. Moreover, the cylindrical-shaped fixed bed reactors tested so far do not allow a proper control of the physical phenomena, i.e. heat-energy and mass transfer, hindering the industrial application of this hybrid process. The present project proposes the construction of micro-structured reactors for CO2 hydrogenation. By means of an optimized geometry, this configuration will permit the accurate diagnosis of the interaction between the plasma and the catalytic solid phase, and thus, a better understanding of the bulk effects of the coupled plasma-catalytic phenomena. In this sense, the energy practically provided by the plasma can be tailored to fit the requirements of the catalytic reaction. Furthermore, a better control of heat and mass transfer will be gained through the micro-structuration of the catalytic system and reactants/products flow.


Migration cellulaire en environnements complexes

Equipes :
BIO6
Porteurs du projet :
VARGAS/PIEL/DESCROIX/SEPULVEDA
Année d'obtention :
2017

La migration cellulaire est une fonction fondamentale pour les organismes unicellulaires et multicellulaires plus complexes. Chez les vertébrés, elle est essentielle pour le développement embryonnaire, la cicatrisation et l’immunité. Des défauts dans la migration cellulaire peuvent entrainer des maladies autoimmunes ou la métastatisaton des cancers. C’est donc un mécanisme à fort potentiel thérapeutique. Afin de comprendre les processus permettant aux cellules de migrer dans les tissus, nous proposons en collaboration avec l’équipe MMBM un projet qui, dans un premier temps, vise au développement d’une puce innovante en collagène 3D directement moulée in vivo sur les tissus, afin mimer au mieux les conditions physiologiques. Cette puce nous permettra d’identifier les réarrangements du cytosquelette mis en place par la cellule pour migrer dans des environnements complexes. Nous nous focaliserons sur les leucocytes qui sont spécialisées dans la colonisation rapide des tissus secondaires lors de l’infection. D’un point de vue appliqué, un travail en collaboration avec l’Institut Imagine (Hôpital Necker) nous permettra de tester nos découvertes dans un contexte physiologiquement pertinent. Les connaissances qui résulteront de cette étude permettront de mieux comprendre les mécanismes qui permettent et optimisent le déplacement de la cellule dans les différentes géométries complexes des organes sains ou malades.


« Candida albicans sur puce » Développement d’une phénomique quantitative de C. albicans, et étude des mécanismes biophysiques d’infection dans des dispositifs microfluidiques de type « organes sur puces »

Equipes :
MMBM
Porteurs du projet :
C. Villard
Année d'obtention :
2017

Les champignons sont omniprésents dans notre environnement. La capacité fascinante de ces organismes à produire des réseaux étendus de filaments (ou hyphes) est à l’origine de leur colonisation massive de la biosphère, et une des clés de leur pathogénicité. Nous proposons dans ce projet collaboratif une étude biophysique de la croissance filamenteuse d’un champignon du microbiote humain : Candida albicans. Un premier objectif sera de développer grâce aux outils microfluidiques un ensemble d’observables biophysiques quantitatives de cette croissance. Dans un deuxième temps, nous mènerons une approche de type « organe sur puce » permettant l’étude des interactions entre cellules animales et hyphes. Notre ambition est d’obtenir à la fin du projet de nouveaux outils expérimentaux et conceptuels permettant une caractérisation phénotypique fine des champignons filamenteux associée à leur génotype, ainsi qu’une compréhension plus profonde des mécanismes associés à leurs propriétés invasives.


Endommagement plastique des matériaux amorphes : étude mésoscopique

Equipes :
MMN
Porteurs du projet :
Elisabeth Bouchaud
Année d'obtention :
2017

We will prepare concentrated emulsions of different structures with a microfluidic device, which can further be cross-linked, in order to make model amorphous 2D materials with controlled density and cohesiveness. These amorphous structures will have a « basic atom » of size ~50µm. They will be fractured in a controlled way, and plastic events, i.e. local irreversible rearrangements occurring around the crack tip, will be observed in conventional and confocal microscopy. Their influence on the fracture path and on the fracture dynamics will be studied. The obtained results will be compa-red to theoretical predictions, and to the results of numerical simulations. This study could be the basis of constitutive laws for soft amorphous materials.


Une nouvelle voie pour la séparation eau-éthanol grâce aux membranes de graphène-oxide

Equipes :
MICROMEGAS
Porteurs du projet :
Alessandro Siria
Année d'obtention :
2017

The depletion of fossil fuel resources and its increase in global demand lead to the development of alternative sustainable energies replacing fossil fuel. The biofuels, such as the ethanol and butanol, have recently attracted great attention, both in fundamental researches and industrial applications. Biofuels are attractive due their diverse resources, such as sugarcane, wheat, corn, lignocellulosic biomass, and crop waste residues. Standard technologies to produce and purify biofuels (fermentation and pervaporation), however, are not very efficient energetically. While membrane reverse osmosis approaches would be much less costly, the attempts to fabricate membranes that are semi-permeable to ethanol but not to water were merely unsuccessful. In this project, we propose here to develop a new class of membranes made of a multistack of graphene and graphene-oxide layers for the separation of water-ethanol mixtures. Based on a theoretical and numerical prediction obtained in our team, showing that GO membrane are self-semi-permebale, we expect this graphitic membrane to allow for the separation of water from alcohol across this membrane. Preliminary experimental result confirm this unique property, which remain to be thoroughly investigated. This is the aiom of the present project. It will allow to develop a completely new and highly attractive method for water-ethanol separation.


Alvéole mimétique en microfluidique pour des études mécanistiques de translocation des nanoparticules dans le système respiratoire

Porteurs du projet :
Yong Chen
Année d'obtention :
2017

Actually, the daily exposure of ultrafine particles to human body goes from 20 to 500 g/m3 and the respiratory system is certainly the most critical route of such an exposure. While the fine particle passages through the alveolar epithelium barrier is the key issue for non-desired inhalation, the pharmacological delivery of drug through lung system is one of important subjects in nanomedicine. In both cases, there is still a lack of mechanistic understanding about the interactions of nanoparticles with human pulmonary alveolar barrier. To overcome this shortage, we propose an in-vitro model made of human alveolar epithelium and endothelium formed on a monolayer of elastic fibers which mimic structurally and functionally the human alveolus. In particular, we propose to use human induced pluripotent stem cells (hiPSC) and microfluidic device to build alveoli-on-chip systems, together with a high precision flow control setup, to study nanoparticles crossing alveolar barrier.


37 projets.